

Lieutenant I. M. Cadell R.E
1902-1930.

Lieutenant Cadell, whose photograph appears as the frontispiece of this volume, joined the Survey of India in February 1926, having been commissioned in the Royal Engineers on August 31st 1922. He died at Loi Hkiao in the Southern Shan States on December 27th 1930, while engaged in principal triangulation.

In 1927 and 1928 he was employed on topographical work, principally on the survey of Chitrāl, a difficult country well-suited to his energetic character. From August 1929 until his death he was in charge of the primary triangulation party, and undertook the comnection of the Indo-Burmese triangulation with that of Siam. After overcoming many difficulties during his first season in the Shan States, the work was progressing very well during the second season, and was nearly completed when he was attacked by pneumonia, of which he died a few days later.

Lieutenant Cadell was an officer of great energy and enthusiasm, who appeared to enjoy discomfort. It was characteristic of him that he should have ignored his attack of pneumonia until it was too late for assistance to be sent. By his untimely death the Survey of India, and his many friends, have suffered a great loss.

SURVEY OF INDIA

GEODETIC REPORT VOL. VII

From lst October 1930

To 30th September 1931

PURLINHED RY ORDER OF
BRIGADIER R. H. THOMAS, D.S.O., SURVEYOR GENERAL OF'INDIA

PRINTED AT THE GEODETIC RRANCH OFFICE, SURVEY OF INDIA, IIEHRA IOUN, 1032.

Price Three Rupees or Five shillings and Three leme
CONTENTS
Page
Lieutenant Ian Macfarlane Cadele, r.e. i
Introduction ix
Chapter I
Computations and Publication of data
Para

1. Junction with Siamese Triangulation 1
2. Mong Hsat-Great Salween Series junction 4
3. Chittagong Series 4
4. Indo-Russian Triangulation junction 6
5. Adjustment of minor triangulation 7
6. Computation forms 8
7. Publications 8
8. Miscellaneous computations 8
9. Drawing Section 9
Chapter II
Observatories
10. Standards of length 10
11. Longitude 20
12. Latitude variation 21
13. Seismograph and Meteorological observations 21
14. Miscellaneous work 21
Chapter III
Tides
15. Tidal observations 32
16. Inspections $: 2$
17. Harmonic amalysis 32
18. Corrections to predictions 33
19. Tide-tables 33
20. Accuracy of predictions 33
Chapter IV
Deviation of the vertical
Section I
Latitude Detachment
Para Page
21. Summary 49
22. Programme 49
23. Astronomical observations 50
24. Geodetic fixing 50
25. Narrative of season's work 53
26. Computations 53
27. The geoidal section 54
28. Deflection observations in Burma 56
Section II
The traverse across the Great Indian Desert
29. Programme 60
30. Personnel and transport 60
31. Equipment 61
32. Nature of the country 61
33. Water 62
34. Inhabitants 63
35. Temperature 63
36. The traverse 63
37. Method of traverse 64
38. Deflections 65
39. Results 65
40. Deductions f6
Chapter V
Gravity
(i) Field Season 1930-31
41. Programine 75
42. Strength of the party 75
43. Apparatus 75
44. Details of the observations 76
Para Page
(ii) Resulits of the field work
45. General description of the area 76
46. Results 78
47. $g-\gamma_{F}$ and geology 78
48. The depth of the Indus alluvium 79
49. Gravimetric observations 79
50. Gravity results and deflections 80
Chapter VI
Triangulation and Base Measurement
51. Summary 85
52. No. 1 Detachment 85
53. No. 2 Detachment 87
54. Wild theodolite 88
55. Astronomical observations 91
56. Kengtung Base 92
Chapter VII
Levelling
57. Organization 95
58. Summary of out-tur'ı 95
59. Work of detachments 95
60. Probable errors 98
61. Progress of the new level net 100
Cbapter VIII
The Magnetic Survey
62. Summary 118
63. Dehra Dūn Oliscrvatory, 1930 118
64. Field Repeat Stations, 1930-31 119
65. Dehra Dūn Observatory, 1920-30 120
Chaptier IX
The Lay-out of Geodetic Triangulation, and the Intervals between Base-Lines and Laplace Points 143
List of Publications of the Survey of India 151

Charts and Plates

Charts and Plates			
Portrait		Lieutenant Ian Macfarlane Cadell, r.e. Frontispiece	
Chart	I	Indo-Siamese Connections	1
	II	Triangulation in Turkistan	6
Plate	III	24-metre Comparator: Length at different temperatures in 1930-31	18
Chart	IV	Latitude Stations	49
	V	Telegraphic Longitude Stations	49
Plate	VI	Geoidal Section, Meridian $75^{\circ} \mathrm{E}$.	54
"	VII	$\left.\begin{array}{l}\text { (a) Special target in use with Hunter } \\ \text { Short Base } \\ \text { (b) Scene in the Great Indian Desert }\end{array}\right\}$	64
"	VIII	Two photographs of Hunter Short Base (new model)	64
Chart	IX	The Geoid	66
"	X	The Compensated Geoid	66
	XI	Pendulum Stations	75
"	XII	Gravity Anomalies (Hayford). Contours showing $g-\gamma_{C}$..	78
"	XIII	Gravity Anomalies. Contours of $g-\gamma_{F}$, S. of I. Spheroid II	78
"	XIV	Triangulation Series and Azimuth Stations	85
"	V	Mong Hsat and Great Salween Series	85
"	XVI	Burma Coast Extension Series	87
,	XVII	Lines of Precise Levelling and Tidal Stations	94
"	XVIII	Length of Levelling Staves 1930-31	116
	XIX	Magnetic Repeat Stations and Observatories	119
Plate	XX	Maguetic Elements at Alibāg 1925-30	19
,	XXI	Magnetic Elements at Dehra Dūn 1915-30	119
"	XXII	Log $\pi^{2} K$ of Magnet No. 17	121
"	XXIII	Magnetic moment of Maguet No. 17	121
"	XXI	Lines of equal Magnetic Declination	122
"	XxV	Lines of equal Horizontal Force	122
"	XXVI	Lines of equal Magnetic Dip	122
	XXVII	Lines of equal Total Force at epoch $1931 \cdot 0$	122
Chart	XXVIII	Index to Triangulation Pamphlets (India \& Burma)	e end
"	XXIX	Index to Triangulation Pamphlets (Irāq, Persia and Aden)	

INTRODUCTION

Abstract

During the year 19:30-31 the Geodetic Branch suffered the loss of one of its most devoted members. Lieut. I.M. Cadell, r. e., was engaged on the triangulation in Burma which makes the first high-class connection of the great Indo-Burmese framework with the extensive geodetic triangulation of Siam and French IndoChina. After overcoming many difficulties he was within sight of the completion of the work. His zeal for this made him pay scant attention to his own well-being, and by the most cruel fortune he contracted pneumonia on one of the hill stations of the triangulation. His over-delayed appeal for medical help was too late and he died on 27th December 1930 at Loi Hkiao, Southern Shān States, before medical assistance could reach him. A photograph of Lieut. Cadell, who was held in high esteem by all his colleagues, who greatly deplore his loss, forms the frontispiece of this volume.

The usual activities of the Geodetic Branch were continued during 1930-31 both at Headquartors and in the field where gravity, latitude and longitude, triangulation and spirit-levelling observations were made.

Gravity and deflection wirk.-(Chapter IV Sec. II and Chapter V) Major E.A. Glounie, r.s.o., r.e., was in charge of the gravity work and operated mainly in the trackless and waterless Bikaner Desert. In this region there are few natural features and the geographic positions of the stations were fixed by an accurate subtense traverse. A distance of about $1 \% 0$ miles was covered in this way by observations to a Hunter Short Base, the sulbtense distance averaging $1 \frac{3}{4}$ miles. The closing error between two series of geodetic triangulation was $1 / 6,000$ and georletic positions may be considered good to one second of are. Nine stations were observed at with the large prismatic astrolabe whoreby deffections in both meridian and prime vertical were obtained and at six of these the value of g also was determined.

Observations were also made on this section of the work with a "Gravity Gradiometer". This is the first season that this instrumont has been employed ly the Survey of Jndia and it is regrettable that instrumental faults were found to exist which rendered the results unreliable-particularly unfortunate as the great natural difficulties of the country had been successfully overcome.

The pendulum work was not confined to this area where about half the season was spent, and values of g were also determined at 16 other stations-in all 22. Major Glennie briefly reviews the results obtained.

A latitude detachment (Chapter IV Sec. I) under Mr. R.B. Mathur worked in another region along meridian $75^{\circ} \mathrm{E}$. Forty-four stations at intervals of about 10 miles were distributed between Ajmer. (lat. 26°) and Banihāl Pass (lat. $33^{\circ} 30^{\prime}$). Observations were made by the Talcott method using the small Zenith Telescope. The special object of this work was to strengthen the connection of the geoid in Kashmir with the rest of India. Captain G. Bomford, r.e. discusses the results in Chapter IV Sec. I. Reference to G. R. Vol. III may be made, where certain conjectures as to the geoidal form in the region now explored were made. These have been justified by the results of the past season and we now have reliable geoidal results for the first serious penetration of the Himãlaya. The superiority of Survey of India spheroid II over the International spheroid in fitting the geoid in Indic is also conspicuous. The notable difference of this spheroid is in the flattening : the elements of the two spheroids being-

> Semi-axis major Flattening

Survey of India, II \ldots	$6,378,541$ metres	$1 / 292 \cdot 4$	
International	\ldots	$6,378,388$ metres	$1 / 297$

The latitude observer Mr. R.B. Mathur is to be congratulated on the successful completion of this programme. The 44 stations were in 32 cases at or near old stations of triangulation but the positions of the residue had to be fixprl by resection. This is the first occasion on which the recently allopted principle (vide Chapter IV Sec. I paras 2 and 4) of measuring deflections with somewhat reduced precision, but at closer intervals (10 miles) than was done formerly, has been adopterl. The leffection stations cannot in all cases be located at, ir adjacent to the triangulated stations and recourse has to be made to resection to tix their gencletic positions. The result is a much more dratailed and accurate knowledge of the geoidal form, which is essential for the continume revelopment of the study of the "anth's rrust by the powerful geoidal methods introrluced in India luring the last ten years. It is hoped to apply the same method to longitule as well as latitude deflections, and observations of deflections on a line across Inclia via Calcutta, Benares and Jhānsi are in the programme for field season 1932-33.

Isostasy denied.-.I have been at some pains, especially during the last year, to point out that the Hayford hypothesis of isostasy roes not fit the facts of continental Inrlia (vide Nature April 18th, 1931 pp. 593-594; Empire Surveyors Conference 1931; British Association 1931, discussion of Mr. Hinks paper "Problems of the

Earth's Crust" reprinted in the Geographical Journal Nov. 1931 ; Geophysical Supplement to R.A.S. M.N., Jan. 1932). Such extravagant claims have been made for the universality of isostasy, that it has been deemed imperative to reiterate that the evidence of the extensive Indian results is in strong contradiction. I have dealt with the negation of isostasy as shown by the deflection and g-anomalies. Major Glennie (Chapter V § 6) has considered the physicogeological case and concludes that topographical and abnormal crustal densities are not compensated: and that deep-seated departures from normal density arise from depressions or elevations of the denser layers of the crust. His argument, only briefly summarized in Chapter V, is set forth fully in Professional Paper No. 27 "Gravity Anomalies and the Structure of the Earth's crust", just published.

Triangulations and Bases.-(Chapter VI). In the season 1930-31 two comnections were made between the Burmese geodetic triangulation and that of Siam, one at latitude 20° and other at latitude 11°. These connections are of primary importance to geodesy. The field for possible study of the geoid is increased by the whole of the Siamese and French Indo-China areas: and it is to be also remembered that the comection of the Siam triangulation with that of Malay is already begun. It is to be hoped that the necessary deflection observatious in these various regions will soon be taken up. To control the 20° comection a precise base-line was measured at Kengtung, in the neighbourhood of the former junction, as well as necessary deflections of the plumb-line: and in the season 1932-33 a Laplace point will be formed there. The triangulation proper was nearly tinished by Lieut. Cadell. After his death the remaining tigures of the triangulation, the base and the deflections were observed by Capt. Bomford. In regions where the deflections of the plumb-line exist a correction is required to the horizontal angles measured with a theodolite but this correction is negligible when the observed rays are very nearly horizontal or where the deflection is trifling. When, however, rays of considerable elevation, such as 5°, are associated with deflections amounting to $30^{\prime \prime}$ the correction may be as much as $3^{\prime \prime}$ (see Chapter VI $\$ 5$). I drew attention to this in 1918 (Professional Paper No. 16 p. 77). Now it is likely to happen that the rays connecting a base-line with triangulation are considerably elevated: for in hilly country, convenient for triangulation, the base is naturally located in a valley or small plain. Considerable deflections are in this case likely, the more so if the locality is remote from the origin of survey. In such cases it is essential that the deflections be measured, so that the corrections to angles of triangulation may be applied: failing which all the precision of the base is liable to be thrown away in the comecting triangles and never reaches the main triangulation. Accordingly at Kengtung the deflections in both componente of all the stations of the baseline figure have been observed-probably the first time on which this necessary procedure has been followed.

As regards the azimuth observations a departure from the old practice in the Survey of India was made. Instead of observing to close circum-polar stars near elongation it is intended in future to observe Polaris at any hour angle. This was done at the Kengtung stations.

In view of the fact that the nearest Laplace point is 300 miles distant. considerable accumulation of triangulated azimuth (p robable value about $3^{\prime \prime}$) is sure to have occurred. Full use of the deflections can only be made after this accumulated error has been assessed by the formation of a Laplace point at Kengtung. This is in the programme for 1932-:33.

The triangulation near latitude -()$^{\circ}$ completed this season, apart from its importance as a junction with the triangulation system of Siam and French Iudo-China (ride Chart I), also connected the Mong Hsat aml Great Salween series, therely greatly strengthening the Burma Quadrilateral. With the measurement of bases at Akyab and Moulmein (in programme for 19:3-33) this Quadrilateral will have nearly approached completion and its partial re-adjustment (not necessarily in full detail) could properly be taken up. The closure of all this work is quite satisfactory.
'Ihe other triangulation at latitude 11° will greatly strengthen the Burma C'oast stries-a pendant series. A larger discrepancy in lon side found on junction with the siamese work cannot as yet be satisfactorily accounted for, but perhaps the re-measurement of the short Mergui Base (in programme for 1932-33) will localize the error. The question of these closing errors is considered in Chapter I, § 1.

It has always herel a matter of great interest to the survey of India that its trianguation shoukl le linked with that of Europe. In 1!1:\% a junction was made with the Russian triangulation in the Pamirs anil it was heped that in clue course the Russian triangulation wruld be coumecterl with Europe. Since that time, however, it has bewn lifticult to ascortain to what extent, if any, this hope had become walized. Recently a Russian publication has been weeired from the Institute of Geodesy and Cartography, Moscow, in which is a summary of the triangulation effected in Turkistan. This unfortunately shows conclusively that no geodetic connection can he hoperl for in that direction for many years. The position is explainer in Chapter I \$ 1 .

The intasurement of a base at Kengtung required a considerable amount of perliminary work. The last occasion on which a geodetic hast was measured in India was in 1582 at Mergui by means of the oll Colby Bar apparatus. The need for further bases, as the triangulation of India and Burma expanded was felt in the early part of this contury, and a very fine equipment with new standards of length, comparators for bars and tapes was acquired in 1913.

Progress with base-lines was, however, entirely impeded by the Great War and the staff of the Geodetic Branch were able to do no more in this work than erect the apparatus and bring it approximately into a state fit for use. In anticipation of the Kengtung Base, comparisons of the various field wires and the standards were carried out by Capt. Bomford. These are dealt with in Chapter II § 1. An unexpected change in the relative lengths of the silica and nickel metre bars, since 1914, amounting to 5μ has been brought to light, which re-standardization at the National Physical Laboratory in 1931 has shown to be due to a change in the nickel standard.

Generation of error in triangulation.-A paper on The Lay-out of Geodetic Triangulation read at the Conference of Empire Surveyors in London, $19: 31$ is reprinted by permission in Chapter IX. J.t is hoperl that this will be a useful guide.

Longitude.-.-(Chapter II § 2). A Shortt clock has been erected and started. Regular observations of longitude at Dehra Dūn have been continued throughout the year.

Latitude variation.-Has also been regularly observed with satisfactory results. (Chapter II § 3).

The Tidal work is dealt with in Chapter III.
Magnetic work.- (Chapter VIII). A magnetic survey of India and Burma was completed during the period 1901-1920 based ou magnetic observatories at Dehra Dūn (1902), Barrackpore (1903) near Calcutta, Alībāg (Bomlay), Kodaikānal (1902), Toungoo (1904), and 1425 ficld stations which included 80 repeat stations. The original plan was that the survey should be kept up to date by the maintenance of some of these observatories and re-observation at intervals of 5years at the 8 O repeat stations. Ecomomic conditions have prevented the fultilment of this intention. The observatories at Dehra Dūu and Alībāg have bern maintained in continued operation: others were closed down as follows:-

Barrackpore	\ldots	\ldots	(April 1915)
Kodaikānal	\ldots	\ldots	(Oct. 1923)
Toungoo	\ldots	\ldots	(Oct. 1923)

As regards the repeat stations, since 1920 only 6 were re-ohserved in 1021-22 and 7 in $1920-23$. As a result the amount of secular changes, except in the vicinity of Dehra Dūn and Alībag, had hecome unknown and it was impossible to reduce results of the Magnetic Survey to an epoch as late as 1930 .

It was revelided then to revisit all the repeat stations and to reopen the observatories at Kodaikinal and Tomboo. As a start 37 repeat stations in the area which was doemed to be allequately supported hy the ohservatories at Dehra and Alīhang were ro-occupied in 1930-31. The observations have been reduced to epoch 1931.0.

It is regrettable that the present financial situation has negatived the considerable cost of reopening the Kodaikānal and Toungo observatories as planned; without which field observations at the remaining repeat stations of SE. India and Burma could not be reduced. Accordingly no more field magnetic work will be carried out for the present.

Precision levelling.-(Chapter VII). Levelling of High Precision has been carried out by three detachments whereby a total equivalent length of $88 t$ miles in both directions has been added to the level net. The total of this net so far accomplished now amounts to 8783 miles. The levelling in Burma is of the old class of "Levelling of Precision". It has been extended by the line Taunggyi-Kengtung with a view to tixing the height of the Kengtung Base measured this year as well as to correct heights of the Mong Hsat triangulation series. A further extension of this line is projected for $19: 32-33$ to effect a junction with the precise levelling system of Siam.

The personnel of the Geodetic Branch during the year is given on the following pages.
$\left.\begin{array}{c}\text { Dehra } \mathrm{Dē}^{\mathrm{n}}, \\ \text { April } 193.9\end{array}\right\}$
J. de Grafff Hunter, Director of the Geodetic Branch.

PERSONNEL* OF THE GEODETIC BRANCH, 1930-31.

Director, Geodetic Branch

Dr. J. de Graaff Hunter. m.a., sc. d., f. ingt. p., to 18th April 1931
Lt.-Colonil F.J.M. King, r. e., from 19th April 1931
COMPUTING AND TIDAL PARTY
(Records and Resfarch)

Class I Officers

Captain G. Bomford. r.e. in charge. to 3rd Jan. 1931 and from 24 th Mar. 1931.
Dr. J. de Graaff Hunter. m.a.. sc. D.. F. inst. P., in charge from th Jan. 1931 to 23 rd Mar. 1931.
Mr. B. L. Gulatec, m. A. (Cantah.). Asstt. Mathematical Adviser, from 21st Apr. 1931.

Class II Officers
Mr. M.N A. Hashmie, B. A.. from 13th Apr. 1931.

Compting Siction

Upper Subordinate Service
Mr. R.C. Ray.
Mr. M. Chatterji.
Mr. S. Mitra.
Mr. H. C. Deva. e. A.. from lat Jan. 1931.
Mr. T. N. Sharma. в. A.
Mr. A. K. Maitra. b. a.
Mr. R. K. Bhattneharya, в. A.
Mr. Sayed Irshad Ahmad. B. A.
Mr. C., B. Madan. b. A.
Mr. M. Das Gupta, besc.. (on probation)
from 17th Nov. 1930.
Lower Subordinate Service 9 Computers.

'lidal Section
 Class II Officers

Mr. D. H Lura. Tidal Assistant, to 1 ith Mar. 1991
Mr. R. B. Mathur. $\boldsymbol{\text { f. A., Tidal Assistant }}$ from 17th Mar 1931.

Low'er Subordinate Service 12 Compaters.

Observatory Section
Upper Subordinate Service
Mr. H C Banerjea. b.A.
Mr G. P Rao, m. A. (on probation).
Lower Subordinate Service
7 Computers.
Magnetic Observatory
Mr. K. N. Mukerji. m. A., to 11th Aug. 1931.

Mr. Shyam Narain. B.sc., from 8th Apr. 1931.

1 Computer.
Office and P. \& M. Section
Upper Sutordinate Service
Mr. B. B. Lal.
Lower Subordinate Service
1 Librarian.
2 Clerks.
Drawing Section
(Administerfid by O.C. 2 D.O.)
Upper Subordinate Service
Mr. L. D. Joshi, to 6th Oct. 1930 and from 20th Jan. 1931.

Lower Subordinate Service
8 Draftsmen.

Latitude Dhtachment
 Class II Officers

Mr. R. B. Mathur, f.A.. in charge. to 16th Mar. 1931.

Lover Subordinate Service,
1 Computer

Magnetic Detachment

Mr. Shyam Narain. b. sc., in charge to 7th Apr. 1931.

> Lower Subordinate Service

1 Computer.

- Excluding No. 2 Drawing Offce, Publication \& Stores and Forest Map Offlce

Class I Officers
Major E. A. Glennie, D.s.o., R.e., in charge.

Upper Subordinate Service
Mr. L. D. Joshi, from 7th Oct. 1930 to 19th Jan. 1931.

15 PARTY (TRIANGULATION)

Class I Officers
Lieut. I. M. Cadell, r. E., in charge, to 27 th Dec. 1931.
Captain G. Bomford, r.e., in charge, from 4th Jan. 1931.

Class II Officers
Mr. M. N. A. Hashmie, B. A., to 1Dth Apr. 1931.

17 PARTY (LEVELLING)
Class 1 Officers
Mr. H. P. D. Morton, in charge. to 7th Mar. 1931.

Class 11 Officers
Mr. D. H. Luxa. in charge from 9th Mar. 1931.

Upper Subordinate Servicc
Mr. J. N. Kohli.
Mr. B. P. Kundev.

Mr. I. D. Suri.

Lower Subordinate Service.

3 Computers \& c.

Upper Subordinate Servicc
Mr. P. K. Chowdhury.
Mr. L. R. Howard.
Mr. Khushal Khan, from 27th Aug. 1931.
Lower Subordinate Service
4 Computers \& c.

Upper Subordinate Service-(Contd).

Mr. Mohd. Faizul Hasan.

Lower Subordinate Service
31 Clerks, Computers. and Recorders, \&c.

Mr. P. B. Roy.
Mr. A. A.S. Matlub Ahrnad.

TRAINING SCHOOL

Mr. L. Williams. m. b. e., Survey Instructor, to 25th Dec. 1930.

Mr. M. M. Mudalier, m. A., Survey Instructor, from 26th Dec. 1930.

Scale $\frac{1}{8,000,000}$ or 1.014 inches to 128 Miles.

Chapter I

COMPUTATIONS AND PUBLICATION OF DATA

by Captain G. Bomford, r.e.

1. Junction with Siamese Triangulation.-The only connection between the Siamese and Indian triangulation systems has hitherto been through the Bangkok Secondary Series in latitude $14^{\circ} \mathrm{N}$., almost the least accurate of the series contained in the Indian geodetic triangulation. During the last year two other comections have been completed: one with the Mong Hsat and Great Salween Series in latitude 20°, and one with the southern end of the Burma Coast Series in latitude 10° (see Chart I). Table 1 (page 5) shows the discrepancies of latitude, longitude, \log side, azimuth and height at these junctions. 'The last season's field work is described in Chapter VI of this report.

As regards latitude and longitude, the basis of the Siamese triangulation is the latitude and longitude of the Survey of India station Khao Luang, which were accepted by the Siamese Survey. In 1916 the Survey of India made a preliminary adjustment of their Burma triangulation, which changed the co-ordinates of all Burmese stations, so that the Siamese and Indian positions for Khao Luang H.S. are no longer identical. As regards log side and azimuth the Siamese Survey is independent of the Indian Survey. The Siamese have measured several bases of their own which have of course been utilized in their computations, and for fundamental azimuth they have accepted an astronomical azimuth observed near their Rajburi Base (latiturle $181_{2}^{\circ} \mathrm{N}$.). Their computations are based on Everest's spheroid, as regards the axes of their spheroid, but, having adopted an independent fundamental azimuth, they cannot be said to be on the Survey of India Everest spheroid, and the two surveys are really in completely independent terms.

The Survey of India figures given in Table 1 are those now accepted and published in the triangulation pamphlets. They are the result of the preliminary adjustment made in 1916, which ignored all Laplace stations (Chittagong, Akyab, Prome and Moulmein) and also the Mergui Base. The figures given for the Mong Hsat Series innore the recently completed connection with the Great Salween Series and the new Kengtung Base (see Table 2, page 5).

The discrepancies of azimuth and log side, shown in Tahle 1, are very considerable. The former are easily explainable, but the
latter are not, and field work will be required in order to locate and remedy the error.

As regards azimuth, the Laplace stations at Prome and Moul mein indicate that the aximuths in the southern part of the Burma Const Series require a correction of about $-11^{\prime \prime}$, and the Laplace station which it is proposed to form at Kengtung will probably shon that the Mony Hsat Series requires a similar correction. To this extent the Indian azimuths are in error, and when the Burmese triangulation is completed and re-adjusted the error will be remedied, A further source of discrepancy lies in the Siamese Survey having assumed their geodetic azimuth to be equal to the astronomical when $\}$ deciding on their fundamental azimuth*. The Siamese triangulation cannot be placed on the Indian Everest spheroid until a Siamese Laplace station is available to indicate the deflection of the plumbline at their origin, but it is possible to estimate the magnitude of the discrepancy arising from this cause. If it can be assumed that the International spheroid accurately represents the geoid (which it certainly does much better than Everest's spheroid), the deflection anywhere in the Siamese triangulation will be about $14^{\prime \prime}$ east, and their astronomical and greodetic azimuths, instead of being in good agreement as at present, should differ by about $14^{\prime \prime} \tan \phi$. The International spheroid is not, of course, sufficiently perfect for this prediction to be at all accurate, but we may expect to find that in order to express the present Siamese azimuths in Indian terms, corrections of about $14^{\prime \prime}$ tan ϕ are necessary. Combining this correction with the known azimuth errors of the Indian geodetic azimuths, the expected diserepancies in latitudes $20^{\circ}, 1 t^{\circ}$ and 10° are $16^{\prime \prime}, 14 \frac{1^{\prime \prime}}{}$ and 1:3!" respectively, leaving outstanding discrepancies (Survey of India minus Siamese) of $+1 \frac{1}{}_{\prime \prime}^{\prime \prime},+14^{\prime \prime}$ and $+1^{\prime \prime}$. Of these, the first and last are very satisfactory, even fortunate. The second is large, but to a great extent it can be fairly attributed to the low quality of the Bangkok Secondary Series.

The discrepancies in log side on the other hand, cannot be explained awar. At the Mong Hsat junction (lat. 20°) the agreement is satisfactory: at the Bangkok junction it is very bad, although if it stond by itself the quality of the Bangkok Series could be held responsibija: but the disecrepancy of about $1: 10,000$ at the south end of the Burma Coast Series (lat. 10°) can only be attributed to serious accumulation of arror in one of the principal sevies of either the Indian or Siamese aystems.

The figures given in Table 1 require some small modification hefore further consideration. The Siamese bases have been reduced to spa-level by means of their geoidal heights, while the Indian Everest spheroid lies about 200 feet below the genid in this area (see Chapter VI, para 6). In orler to express the Siamese triangulation in terms of this spheroil, it would therefore be necessary to reluce their sides by 200 feet in 4000 miles or 0.0000041 in the log. Indian

[^0]sides are expressed in terms of Indian feet or tenths of standard Bar A (see Supplement to Geodetic Report Vol. VI, page vi). To bring the Siamese bases to the same terms requires an addition of 0.0000019 to the log. The total change in the Siamese log sides is thus $-0 \cdot 0000022$, and the discrepancies in the last column of Table 1 require an addition of +0.0000022 , and become +0.0000099 , -0.0000455 , and -0.0000454 at the three junctions.

In terms of the Great Salween Series the discrepancy at the lat. 20° junction is -0.0000044 , while in terms of the newly measured Kengtung Base it is +0.0000027 . This is satisfactory.

At the other two junctions the log side has been brought all the way from the Calcutta and Sonalkhoda bases in Bengal, a distance of over 1000 miles. In triangulation of the best quality such an error as $0 \cdot 0000480$ is not to be expected, even after 1000 miles, but between latitules $14 \frac{1}{2}^{\circ}$ and 16° there is a very weak part of the Burma Coast Series in which the side closures of four successive figures are 139, 55,254 and 114 in the 7 th decimal of the log. In this section there is clearly a possibility of some considerable proportion of the 480 discrepancy having accumulated. There is, however, the Mergui Base, which was ignored in the Burma adjustment. This base was measured in 1880 on the same system and with the same care as the other Indian bases, except that it was measured in one direction only and that it is shorter than is usual (3 miles). The discrepaney between the measured and the triangulated values of the base was 0.000008 .4 , in such a sense that its acceptance would reduce the Indo-Siamese discrepancies to 0.0000371 and 0.0000370 .

If this Mergui Base can be relied on, it is almost impossible that the Survey of India log side in latitude 10° could be in error by $0 \cdot 0000: 30$: an error of one third as much would be unlikely. South of Mergui the series consists of 5 simple triangles with average triangular ervers of $0^{\prime \prime} \cdot 72$ (worst $2^{\prime \prime} \cdot(07$), and four other figures with average side closures of 0.0000023 (worst 59). In lat. 14 . as stated above, the Bangkok Series is capable of accumulating the whole 480 error itself: the side closures of the four tigures west of Khao Luang average $18: i$ in the 7 th decimal (worst 471).

As regards the possibility of error in the Siamese triangulation, it must be remembered that this southerly section is probably the weakest part of the Siamese triangulation, since the nature of the country has enforeed the use of rather elongated tigures. The origimal closing error of log side hetwem the Sidharmaij (lat. $8 \frac{1}{2}^{\circ} \mathrm{N}$.) and Ranjburi lases (lat. $131^{\circ} \mathrm{N}$.) was only 0 oooon $1+1$, but recent re-measurement of the Sriclharmaj Base increased this figure to 00000248. In the nine figures between the Rajhuri Base and the lat. 10° junction, the average \log side closure has been 99 in the 7 th decimal (worst 280). There thus seems to be a possibility that a considerahle part of this lat. 10° riscrepancy may lie in the Siamese series, although this camot be considered to be at all certain.

The discrepancies of latitude and longitude call for little com: ment. The relative discrepancies at the lat. 20° and lat. 10° junctioni are such as would naturally arise from the differences of azimuth and: \log side already discussed.

The discrepancies in height are not serious. The figures given are those brought up by the triangulation. In the case of the latit tude 20° junction, a spirit-levelled connection at the Kengtung Bas has shown that Survey of India heights require no correction. At the f latitude 10° junction Survey of India heights are rather far removed from spirit-levelling, the nearest connection being at Moulmein where a reduction of 5 feet is indicated, which reduces the discre: pancy to 6 feet. At this point the Siamese triangulation is cloself; connected to sea-level and its height is probably correct.

For some time it has been the intention of the Survey of India to measure bases at Akyab and Moulmein, and the re-measurement of the Mergui Base has now been adder to the programme. The Siamese Survey also intend to make some additional observations in the weaker parts of their series, and to include a new base between Srīdharmrāj and Räjburi. These projects should serve to locate the weakness and probably to remedy it.
2. Mong Hsat-Great Salween Series junction.-The last two seasons' work of No. 15 Party, referred to in para 1, completes a circuit of triangulation in Burma. Details of the closing error are given in Table 2. The length of the circuit is 900 miles, so that the closing error of position (about 30 feet) represents au error of $1: 160,000$, which is satisfactory. Details of the closure of the other Inlian circuits are given in Professional Paper No. 16, Table LIII.

The part of the Mandalay Mrridional Series which enters into this circuit has already receiverl some aljustment in the provisional arljustment of the Burma triangulation made in 1916. The closing errors given in Table 2 are consequently not exactly those which will enter into the final adjustment.
3. Chittagong Series.-The Chittagong Series, observed in $1928-30$ has been adjusted between its terminal sides. This arljustment is of course previsional pending the final re-adjustment of all the Burmese triangulation. The closing errors adjusted are shown in Table: :, page 6. This series cuts in half one of the circuits already povisimally arljusted (1916). The length of each of the smaller circuits now formed is about 570 miles, in which the common closing error of :32 fort represents an error of $1: 95,000$.

TABLE 1.—Discrepancies between Indian and Siamese Triangulation.

	Station		Survey of India	Siamese	Survey of India minus Siamese
	Loi Pakulin H.S.	Latitude Longitude Height (ft.) Log side to Loi Tum Azimuth of Tat P		$20^{\circ} 20^{\prime} 39^{\prime \prime} \cdot 34$ $99 \quad 00 \quad 25 \quad$-82 5173 5•1859826 $263^{\circ} 06^{\prime} 15^{\prime \prime} \cdot 4$	$\begin{array}{lr} - & 2^{\prime \prime} \cdot 21 \\ + & 0^{\prime \prime} \cdot 30 \\ - & 3 \\ +0 \cdot 0000077 \\ + & 17^{\prime \prime} \cdot 8 \end{array}$
第	Khao Luang H.S.	Latitude Longitude Height (ft.) Log side to Khao Ang Hin Azimuth of L at A	$\begin{gathered} 13^{\circ} 43^{\prime} 28^{\prime \prime} \cdot 69 \\ 993221 \cdot 52 \\ 1393 \\ \\ 5 \cdot 0051230 \\ 311^{\circ} 33^{\prime} 52^{\prime \prime} \cdot 2 \end{gathered}$	$\begin{gathered} 13^{\circ} 43^{\prime} 30^{\prime \prime} \cdot 34 \\ 99 \\ 3222 \cdot 94 \\ 1383 \\ \\ 5 \cdot 0051707 \\ 311^{\circ} 33^{\prime} 23^{\prime \prime} \cdot 4 \end{gathered}$	$\left[\begin{array}{lr} - & 1^{\prime \prime} \cdot 65 \\ - & 1^{\prime \prime} \cdot 42 \\ + & 10 \\ -0 \cdot 0000477 \\ + & 28^{\prime \prime} \cdot 8 \end{array}\right.$
	Khao Jamaya H.S.	Latitude Longitude Height (ft.) Log side to Khao Natathern Azimuth of N at J	$\begin{aligned} & 10^{\circ} 40^{\prime} 16^{\prime \prime} \cdot 50 \\ & 99 \\ & 01 \quad 10 \cdot 50 \\ & 1828 \\ & \\ & 5 \cdot 0000805 \\ & 10^{\circ} 08^{\prime} 52^{\prime \prime} \cdot 7 \end{aligned}$	$\left.\begin{array}{l} 10^{\circ} 40^{\prime} \quad 17^{\prime \prime} \cdot 10 \\ 99 \\ 01 \\ 1817 \\ 18 \cdot 12 \end{array}\right] \begin{aligned} & 5 \cdot 0001281 \\ & 10^{\circ} 08^{\prime} 38^{\prime \prime} \cdot 4 \end{aligned}$	$\left\lvert\, \begin{array}{lr} - & 0^{\prime \prime} \cdot 60 \\ - & 1^{\prime \prime} \cdot 62 \\ + & 11 \\ -0 \cdot 0000476 \\ + & 14^{\prime \prime} \cdot 3 \end{array}\right.$

TABLE 2.--Discrepancies between Mong Hsat \& Great Salween Series.

	(a) In terms of Great Salween 1900-1911	(b) In terms of Mong Hat and Great Silween 1929-31	($a-b$)
Latiture of Loi Wan Wa H.S.	$21^{\circ} 42^{\prime} 29^{\prime \prime} .96$	$21^{\circ} 42^{\prime} 30^{\prime \prime} \cdot 24$	- $0^{\prime \prime} \cdot 28$
Lorusimido of Loi Wan Wa H.S.	$0918 \quad 17 \cdot 61$	$\begin{array}{lllll}99 & 18 & 17 & 81\end{array}$	- $0^{\prime \prime} \cdot 20$
Hright of Loi Wan Wa (feet) ...	(i50)	6514	- 10
Ing sidn loi Wan Wa-Loi Anglawng	$5 \cdot 1638714$	$5 \cdot 1638857$	-0.0000143
Azimuth of Loi Anglawng at Loi Wan Wa	$188^{\prime} 20^{\prime} 02^{\prime \prime} \cdot 7$	$188^{\circ} 20^{\prime} 02^{\prime \prime} \cdot 0$	$+\quad 017$

[^1]TABLE 3.-Closing errors of Chittagong Series.

	(a) In terms of Burma Coast Series $1864-82$	(b) In terms of Chittagong Series 1928-30	$(a-b)$
Latitude of Sitapahir H.S.	$22^{\circ} 29^{\prime} 28^{\prime \prime} \cdot 17$	$22^{\circ} 29^{\prime} 28^{\prime \prime} \cdot 30$	- $0^{\prime \prime} \cdot 13$
Longitude of Sitapahir H.S.	$92 \quad 10 \quad 03 \cdot 50$	$\begin{array}{lllll}92 & 10 & 03 & \text {-81 }\end{array}$	
Height of Sitapahin (feet) .	1135	1126	$+\quad 9$ +0.0000120
Log side Sitapahir-Gihachhari -	$4 \cdot 8300369$	4.8300249	+0.0000120
Azimuth of Gilachhuri at Sitapahirr	$305^{\circ} 00^{\prime} 26^{\prime \prime} \cdot 5$	$305^{\circ} 00^{\prime} 24^{\prime \prime} \cdot 8$	+ 1"•7

4. Indo-Russian Triangulation junction.-In 1913 , junction was made between the triangulation of India and Russint at Sarbleck in the Pimmirs*. At the time when this work wa: undertaken it was hoped that its result would be the connection of the Indian and European triangulation systems, but it was soon discovered that this was not the case, and that the Russian work in Turkistan was still unconnected with Europe. No precise informa: tion was then available regarding the extent or quality of the Turkistan triangulation, and no further information was obtainable during and after the war, although in recent years rumours had reacherd India that triangulation of some sort was in progress. Recontly, however, there has cone into being an "Institute of Geo. desy and Cartourraphy" at Moseow, which publishes a periodical (in Russian) called the "Geodesist". In the April 1930 number of this perioolical is a descriptiont of all the triangulation hitherto carried out in Turkistan.

This article contains much of the information which has so long heen sought, but it shows that hopes of a geodetic connection between India and Europe in this direction are quite unfounded. The work has not yet been begun.

Chart [IT, which is based on an illustration in the "Geodesist", shows all triaurulation in Turkistan observed or projected up to 1939. Thי work is divided into three groups.
(a) 1871-189\%. This is rapil exploratory work of which the: artirle says:- - "During this first period triangulation was of a haphazarl nature as it was carried out (usually at a rush) to meet the probloms of the local commander. Owing to this it was dittionlt twhave a real programme and a proper sequence of work. or to work on a atrictly scientific basis. Therefore the commection lutwon seprate areas was incomplete or doubtful anl shaky. or at times non-existent, and errors increased owing to the short life of the wooden centres or the complete absence of thest. It must also be alded that at times the limitations

[^2]
of the problem, or special urgency, dictated the most speedy and simplified methods of triangulation, quite impermissible under normal circumstances".
(b) 1895-1929 [excluding (c)]. This is probably ordinary topographical triangulation. No information is given regarding its quality, except that it is considered subsidiary to (c), below. Much of it has recently been recomputed and brought into common terms with (c).
(c) The "Main Turkistan Line", running from north of Kazalinsk near the Sea of Aral, through Tashkent to the IndoRussian junction in the Pämirs. This is clearly considered to be the most reliable series, but no information is given by which its quality can be judged. It is, however, known * that the accumulation of scale error between the bases at Osh and Kizil Rabate amounts to $1: 2700$, a figure 30 or 40 times greater than is typical of geodetic triangulation. It is of course possible that the rest of the line is of better quality, having presumably been carried out under easier conditions, but the section Osh-Pamir is referred to as part of the main chain, and no mention is made of its inferior quality.
It is thus practically certain that no Russian geodetic \dagger triangulation exists in Turkistan. Nor can it even be said that geodetie triangulation has been carried up to the Indian frontier. The difficulties of the country are such that both the lay-out of the figures and the precision of angular measurement necessarily fall far short of geodetic standards. North of Hunza the side closures of successive figures average 0.0000364 (worst 982), and the closing error on the Russian base at Kizil Rabate is $1: 4700$ (930 in the 7th decimal of the \log).

The probability of the Russian surveyors reobserving their "Main Turkistan Line" or of the Survey of India being able to improve on their conmecting sories, must be considered extremely remotr, and the most hopeful direction for an Indo-European geodetic comnection is probably through Persia and Asia Minor. Political and financial conditions are such as to offer no hope of the work lring begun at present, but false hopes of an easy comnection through Russia should not be allowed to distract attention from the necessity for it, if conditions should ever become more favourable.
5. Adjustment of minor triangulation.-The rough adjustment of topographical triangulation on the North-West Frontier, which was begun in 1926 (see Geodetic Report, Vol III, page 31)

[^3]has been taken up again. In 1926 the confusion of the old records in $1 / \mathrm{M}$ sheets $34 \& 89$ was such that no progress could be made, but the confusion has now been straightened out, and the work is progressing well.

Adjustment of triangulation in N.W. Persia observed in 1917. 19 has been carried out in a similar way, and also of triangulation observed in S.W. Persia in 1910-25 of which most has been observed for the Anglo-Persian Oil Company.
6. Computation forms.-Changes in the form of the presentation of data in the Nautical Almanac have involved alteration in all astronomical computation forms, of which 10 have been rearranged and reprinted. The new forms are applicable to both the complete and abridged editions of the Almanac.

A form (26 Trian.) has been designed for the correction of the horizontal angles of primary triangulation for dislevelment * due to deviation of the vertical, when the latter is known. This correction has not been applied hitherto, but it was found desirable in the case of the angles of the Kengtung Base-net, where the deviation is large and the rays are steeply inclined.
7. Publications.-The triangulation data for 4 Indian and 19 Persian degree sheets have been compiled. Four Persian pamphlets (8 degree sheets) have been printed and three Indian pamphlets have been reprinted. Addenda to 9 sheets have also been printed.

The levelling pamphlet for $1 / \mathrm{M}$ sheet 56 has been reprinted with considerable additions. 170 miles of primary levelling have been printed as addenda, and 3 secondary ines have been reproduced by Gestetner.

Progress is being made with the printing of Auxiliary Tables, Part V, (Lambert Griit), but it is not yet finished. Progress is also bring malu with the press copy of Auxiliary Tables, Part IV, (G godetic Tables), which is nearly complete.

In addition to the above, the following publications have been seen through the press:-
(a) Georletic Report, Vol. VI
(b) Anxiliary Tables, Part II. Reprint.
(r) Departmental Paper No. 10. "Hunter Short Base". 2nd erlition.
8. Miscellaneous computations.-The gridding of varinus special maps has necessitated the computation of many sets of grill cutting points on meridians and parallels not included in the regular tahles.

Progress has heen made with the adjustment of triangulated hoights to spirit-levellel values, as the result of connections between bench-marks and minor triangulation carried out by topographical parties.

[^4]Instruction has been given to three Class I officers on first joining the department.
9. Drawing Section.-The drawing section has completed the following work.
(a) Charts for 21 triangulation pamphlets.
(b) Chart for 1 levelling pamphlet.
(c) 23 charts and diagrams for Geodetic Report, Volume VI
(d) 10 charts for Geodetic Report Volume VII.
(e) 5 figures for the Geodetic Handbook, Part I.
(f) 3 figures for Departmental Paper No. 10.
(g) About 40 miscellaneous charts and figures.

Chapter II

OBSERVATORIES

by Captain G. Bompord, ree.

1. Standards of length.-The measurement of the Keng. tung Base line (see Chapter VI) has necessitated the standardiza. tion of the invar wires of the Jäderin equipment. The 24 -metre and 4 -metre comparators, which were obtained in 1914, have not previously been put to serious use and a considerable amount of time has had to be spent on their adjustment before satisfactory resulti have been obtained.

The modern standards of the Survey of India consist of :-(1) a nickel metre by the Societè Genevoise d' Instruments de Physique. which was standardized by the National Physical Laboratory in 1914. and (2) a fused silica bar constructed by the N.P.L. and standardizel by them in 1925. A comparison between the two standards in 1930, revealed a discrepancy of 6μ. This necessitated the return of the bars to the N.P.L., who have found that the nickel bar has shortened by $4 \frac{1}{2} \mu$ since 1914, presumably by reason of some unrecorded ill-treatment between 1914 and 1930.

The sub-standard used in the 24 -metre comparator is a 4 -metro invar bar, which was standardized by the N.P.L. in 1914. It ha: been compared with the nickel and silica metres and has been found to have increased in length by $7: 5$ in $1,000,000$ in 16 years. It coefficient of expansion has been roughly checked and has been found to agree with the certificate within 1 in $10,000,000$ per ${ }^{\circ} \mathrm{C}$. and the original value of the coefficient has been accepted.

The six 24 -metre inpar wires used were standardized at Sèvres in 1908 , since when they have increaserl in length by about 0.22 mm . in the case of one batch and 0.38 mm . in another. Such an increase is to be expected, but it has also been found that the coefficients of expansion quoted in the original certificate are now quite inapplicable. The discrepancy is so great as to have been obvious as soon as the wires were used in the field (see Chapter VI, para 6), and it has been confirmed by direct determination made in the field, and also on the 24 -metre comparator at Dehra. Details are given in sub-para c.

The 24 -metre comparator was originally designed with auxiliars microscopes for the detetmination of coefficients of expansion, but the necessary tank (with equipment for circulating and heating the water in it) had never been constructed. This has now been done.

The thermostat for controlling the temperature in the 4 -metre comparator was broken in transit from England many years ago. A new thermostat, which was designed and constructed by Mr. G. F. Wood of the Royal Indian Military College, Dehra Dūn, has now been completed and installed.

A full description of the Survey of India comparators is given in "Engineering" Vol. C 1915.

The following paragraphs give details of the observations and of the deduction of the length of the wires and intermediate standards. The observers were Captain G. Bomford and Mr. R. B. Mathur.
(a) Certificates.-The certificates of the bars and wires are as follows:-

Nickel 1-metre, N.P.L., 1931 :-

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{t}}=\mathrm{L}_{0}\left(1+0 \cdot 000012396 t+0 \cdot 00000000836 t^{2}\right) \\
& \mathrm{L}_{20}=1 \text { metre }+0 \cdot 2663 \mathrm{~mm} .
\end{aligned}
$$

Silica 1-metre, N.P.L., 1931 :-

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{t}}=\mathrm{L}_{0}\left(1+0 \cdot 000000383 t+0 \cdot 00000000096 t^{2}\right) \\
& \mathrm{L}_{20}=1 \text { metre }-0 \cdot 0253 \mathrm{~mm} .
\end{aligned}
$$

Invar 4-metre, N.P.L., 1914 :--

$$
\begin{aligned}
\mathrm{L}_{\mathrm{t}}= & \mathrm{L}_{0}\left(1+0 \cdot 000001450 t-0 \cdot 0000000005 t^{2}\right) \\
\mathrm{L}_{20}=4 \text { metres } & +0 \cdot 160 \mathrm{~mm} \text { on centre line (Baros plugs) } \\
& +0 \cdot 157 \mathrm{~mm} \text { on edge } \mathrm{A} \\
& +0 \cdot 160 \mathrm{~mm} \text { on edge } \mathrm{B}
\end{aligned}
$$

24-metre invar wires Nos. 243 \& 244, Sèvres 1908:-

$$
\begin{aligned}
\mathrm{L}_{\mathrm{t}}= & \mathrm{L}_{\mathrm{o}}\left(1+0 \cdot 000000302 t+0 \cdot 00000000286 t^{2}\right) \\
& \mathrm{N}_{\mathrm{o}} .243 \quad \mathrm{~L}_{15}=24 \mathrm{~m}-0 \cdot 74 \mathrm{~mm} \\
& \text { No. } 244 \quad \mathrm{~L}_{15}=24 \mathrm{~m}-2 \cdot 05 \mathrm{~mm}
\end{aligned}
$$

24-melve wires Nos. 247, 248, 249 \& 252, Sèvres 1908 :-

$$
\begin{aligned}
\mathrm{L}_{\mathrm{t}}= & \mathrm{L}_{0}\left(1-0.000000228 t-0.00000000040 t^{2}\right) \\
& \text { No. } 247 \quad \mathrm{~L}_{15}=24 \mathrm{~m}+0.74 \mathrm{~mm} \\
& \text { No. } 248 \quad \mathrm{~L}_{15}=24 \mathrm{~m}+0.86 \mathrm{~mm} \\
& \text { No. } 249 \quad \mathrm{~L}_{15}=24 \mathrm{~m}+063 \mathrm{~mm} \\
& \text { No. } 252 \quad \mathrm{~L}_{15}=24 \mathrm{~m}+2.04 \mathrm{~mm}
\end{aligned}
$$

The temperatures referred to in the certificates are all on the hydrogen scale, to which the certificates of the thermometers used also refer.

In the following paragraphs the "reputed length" of a har means the length according to the above certiticates at the temperature of observation.
(b) Coefficient of Expansion of Invar 4-m.-The invar bar was com. pared against the nickel-steel 4-m sub-standard at temperature: of about $24^{\circ} \mathrm{C}$ and $33^{\circ} \mathrm{C}$, the nickel-steel* being kept at an almos constant temperature. The programme of observation was not 9 very full one, since the first few observations confirmed the N.P.L certificates within sufficiently close limits.

Invar 4-m minus Nickel-steel 4-1m.

Date	Temperature	G.B	R.B.M.
15-10-31	$\begin{array}{ll} \hline \mathrm{T}_{\mathrm{I}} & 23^{\circ} \cdot 9 \\ \mathrm{~T}_{\mathrm{ws}} & 23^{\circ} \cdot 80 \\ & \text { Mean } \\ \mathrm{T}_{\mathrm{I}} & 32^{\circ} \cdot 75 \\ \mathrm{~T}_{\mathrm{ws}} & 23^{\circ} \cdot 94 \\ & \text { Mean } \end{array}$	$\left\lvert\, \begin{aligned} & -0.0012 \mathrm{~mm} \\ & -0.0001 \end{aligned}\right.$	-0.0020 mm -0.0002
		-0.0007	-0.0011
		+0.0432	+0.0422
		$+0.0419$	+0.0405
		+0.0426	+0.0414

Reputed increase in N.S	$=0.0042 \mathrm{~mm}$
\therefore Observed increase in Invar	$=0.0475$ G.B.
or	0.0467 R.B.M.
Temperature range (Invar)	$=8.85 \mathrm{C}$
\therefore Increase per 4 m per ${ }^{\circ} \mathrm{C}$	$=0.0053 \mathrm{~mm}$
N.P.L. at $28^{\circ} \mathrm{C}$ gives	0.0057

The discrepancy is 1 in 10^{7} per ${ }^{\circ} \mathrm{C}$. Since the expansion is only required through a range of $4^{\circ} \mathrm{C}$, this has been considered to be sufficient check, and the N.P.L. value has been accepted.
(e) Coefficient of expansion of invar wires.-The coefficients were determined three times in the comparator at temperatures ranging from about $24^{\circ} \mathrm{C}$ to $36^{\circ} \mathrm{C}$. The coefficients of four of the wires were also determined in the field by measurement of a 240 -metre length at about $13^{\circ} \mathrm{C}$ and at $33^{\circ} \mathrm{C}$. The results are given below:-

Increase in mm . per 24 m per ${ }^{\circ} \mathrm{C}$.
Tension 10 Kilogrammes. October 1931

| | | 243 | 244 | 247 | 248 | 249 | 252 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^5]The present results are not very consistent, but they clearly contradict the 1908 values, and also they go far to reconcile the discrepancy between pairs of wires used simultaneously in the field. It may be remarked that a figure of 0.0240 in the above table corresponds to $1: 10^{6}$ per C, and that the mean temperature of the field work was within 2 or 3 degrees of that at which the wires were standardized. The results are thus amply accurate.

The cause of the change is not known. The 1908 determinations were not made on the field wires themselves, but on pieces cut from lengths of the wires from which they were made (243 and 244 were made from one wire: $247,248,249$ and probably 252 from another). It is not known whether the discrepancy is more likely to be due to this cause or to a subsequent change in the coefficient.
(d) Silica $1-\mathrm{m}$ minus Nickel $1-\mathrm{m}$.-

	Morning	Afternoon	
Reputed length of nickel	$=1 \mathrm{~m}+0.3267 \mathrm{~mm}$	$1 \mathrm{~m}+0.3284 \mathrm{~mm}$	
Reputed length of silica	$=1 \mathrm{~m}-0.0233$	$1 \mathrm{~m}-0.0232$	
Reputed silica minus nickel	$=$	-0.3500	-.3516
Observed silica minus nickel	$=$	-0.3482	-.3502
Discrepancy	$=$	-.0018	-.0014

The discrepancy is $1 \cdot 6$ in 10°, which shows that the bars were not seriously damaged in transit between Dehra Dūn and England, and that the comparator was in fair working order.

[^6](e) Invar $\mathbf{4}-\mathrm{m}$ minus Nickel 1-m.-

Firat metre (0 to 1) of invar bar.

Dute	'Tomperature	G.B.	R.B.M.
(t-10.30	$\mathrm{T}_{1}=233^{\circ} \cdot 4$$\mathrm{~T}_{\mathbf{N}}=3.48$	-0. 2.530 mm	-0.2323mm
		- 2.908	- $2 \cdot 2509$
		-2547	-2523
		-2547	-2510
		-2531	- 2520
		- 2519	-2488
		-2351	-2553
	Mean	-0.2532	-0.2515

Reputed length of nickel	$=1 \mathrm{~m}+0.3107 \mathrm{~mm}$
Observed invar minus nickel	$=-0.2524$
ength of invar at $23^{\circ} \cdot 4$	$=1 \mathrm{~m}+0.0583$
" ", ", $24^{\circ} \cdot 3$	$=1 \mathrm{~m}+0.0596$

Second metre (1 to 2) of invar bar.

Date	Temperature	G.B.	R.B.M.
6-10-30	$\begin{aligned} & \mathrm{T}_{1}=23^{3} \cdot 4 \\ & \mathrm{~T}_{\mathrm{w}}=23 \cdot 47 \end{aligned}$	-0.2601 mm .2612 .2622 .2630 .2618 .2617 .2610 .2621	$\begin{gathered} -0.2562 \mathrm{~mm} \\ .2616 \\ .2594 \\ .2637 \\ .2697 \\ .2603 \\ .2697 \\ .2697 \end{gathered}$
	Mean	-0.2616	-0.2601

Reputed length of nickel $\quad=1 \mathrm{~m}+0.3106 \mathrm{~mm}$
Observed invar minus nickel $\quad-0.2609$
\therefore Length of invar at $23^{\circ} \cdot 4=1 \mathrm{~m}+0.0497$
and " ", " $24^{\circ} \cdot 3=1 \mathrm{~m}+0.0510$
Third motre (2 to 3) of invar bar.

Date	Temperature	G.B.	R.B.M.
- 10.10	$\begin{array}{l\|l} \cdots & \mathrm{T}_{\mathrm{r}}=23^{-9} \\ & \mathrm{~T}_{\mathrm{x}}=23^{3} \cdot 97 \end{array}$	-0.2653mm	-0.2638mm
		-2622	.2587
		- 2638	-2614
		-2647	-2644
		- 2629	-2657
		-2664	-2664
		- 26553	- 2667
	Mean	-0.2640	-0.26336

Reputed length of nickel	$=1 \mathrm{~m}+0.3170 \mathrm{~mm}$
Observed invar minus nickel	$=-0.2638$
\therefore Length of invar at $23^{\circ} 9$	$=1 \mathrm{~m}+0.0532$
and " " " $24^{\circ} \cdot 3$	$=1 \mathrm{~m}+0.0538$

Fourth metre (3 to 4) of invar bar.

Date	Temperature	G.B.	R.B.M.
5-10-30	$\mathrm{T}_{1}=23^{3} \cdot 9$	$-0.2597 \mathrm{~mm}$	-0.2612mm
	$\mathrm{T}_{\mathrm{N}}=23^{\circ} \cdot 91$	- 26600	$\begin{aligned} & .2590 \\ & .2555 \end{aligned}$
		-2627	-2638
		-2596	:2567
		-2575	-2555
		-2578	-2545
		. 2590	-2575
	Mean	-0.2591	-0.2580

Reputed length of nickel $=1 \mathrm{~m}+0.3162 \mathrm{~mm}$
Observed invar minus nickel $=-0.2586$
\therefore Length of invar at $23^{\circ} \cdot 9=1 \mathrm{~m}+0.0 .576$
and ", ,", $24^{\circ} \cdot 3=1 \mathrm{~m}+0.0582$
Combining the four sections of the invar bar gives the total length of the bar as $4 \mathrm{~m}+0.2226 \mathrm{~mm}$ at $24^{\circ} \cdot 3 \mathrm{C}$ according to comparison with the nickel.
(f) Invar 4-m minus Nilica 1-m.

First metre (0 to 1) of invar bar.

Date	Temprature	G. B .	R.B.M.
4-71.30	$\mathrm{T}_{1}=24 \cdot 3$	$+0.08 .51 \mathrm{~mm}$	$+0.10572 \mathrm{~mm}$
	$\mathrm{T}_{4}=24 \cdot 31$.0847	- 01098
		-04.2	-07ヶ2
		-08:13	-1094
		-041:2	- 0 ¢ 21
		-0401	-0594
		-0412	-14\%

In the first four sets of observations there are usually large differences hetween the two ohservers. During these sets the lighting of the bar seemed peculiar, and was probahly menponsihle for the discropancies. It is preferred to accept the moan of the last four sets omly, viz:-G.B. $+0 \cdot 081$ is and R.B.M. $+0 \cdot 0809$. The general mean of these sets is only 0.0006 mm less than the mean of all.

$$
\begin{array}{ll}
\text { Reputed length of silica } & =1 \mathrm{~m}-0.0235 \mathrm{~mm} \\
\text { Observed invar minus silica } & =+0.0812 \\
\therefore \text { Length of invar at } 24^{\circ} \cdot 3 & =1 \mathrm{~m}+0.0577
\end{array}
$$

Second metre (1 to 2) of invar bar.

Date	Temperature	G.B.	R.B.M.
4-10-30	$\mathrm{T}_{1}=24^{\circ} \cdot 3$	$+0.0747 \mathrm{~mm}$	$+0.0742 \mathrm{~mm}$
	$\mathrm{T}_{3}=24 \cdot 34$.0720 .0736	.0750 .0754
		.0717	.0747
		-0730	-0783
		.0705	.0708
		-0718	. 0728
		.0715	-0691
	Mewn	+0.0723	+ 0.0732

Reputed length of silica $\quad=1 \mathrm{~m}-0.0235 \mathrm{~mm}$
Observed invar minus silica $=+0.0728$
\therefore Length of invar at $24^{\circ} \cdot 3=1 \mathrm{mn}+0.0493$
Third metre (2 to 3) of invar bar.

[1 it:	Timperature	(7.B.	R.B.M.
- ! 0 . 0	$\begin{aligned} & \mathrm{T}_{1}=29.9 \\ & \mathrm{~T}_{\mathrm{N}}=23.48 \end{aligned}$	$\begin{gathered} +0.0786 \mathrm{~mm} \\ .0780 \end{gathered}$	$\begin{aligned} & 0.0804 \mathrm{~mm} \\ & .0771 \end{aligned}$
		.0794	.0813
		. 08.40	$.0875$
		-0,002	.08:11
		-0772	. 0.807
		-0785	. 0783
		-0796	.0920
		.0801	.0794
	Mean	+0.0787	+ 0.0803

$$
\begin{array}{rll}
\text { Reputed length of silica } & =1 \mathrm{~m}-0.0236 \mathrm{~mm} \\
\text { Observed invar minus silica } & =+0.0795 \\
\therefore \text { Length of invar at } 23^{\circ} \cdot 9 & =1 \mathrm{~m}+0.0559 \\
\text { and ", ", " } \quad, 4^{\circ} \cdot 3 & =1 \mathrm{~m}+0.0565
\end{array}
$$

Combining the four sections of the invar bar gives the total length of the bar as $4 \mathrm{~m}+0 \cdot 2136 \mathrm{~mm}$ at $24^{\circ} \cdot 3 \mathrm{C}$ according to comparison with the silica $1-1 \mathrm{~m}$.

The discrepancy of 0.0090 mm between the above figure and that given by the nickel bar amounts to $2 \cdot 2$ parts in $1,000,000$ which is rather large. The discrepancy is of the same sign in all four sections of the invar bar, and the direct comparison between the nickel and silica bar (sub-para d) showed a similar discrepancy of $1 \cdot 6$ in $1,000,000$. The error is clearly systematic, not casual. Such an error is likely to be caused either by error in the temperature or by damage to a bar in transit. In both cases the nickel bar is the one more likely to error since the silica bar cannot be damaged without visible breakage. The determination from the silica is therefore given treble weight and the combination of the two determinations gives

$$
4 \mathrm{ml}+0 \cdot 2158 \mathrm{~mm} \text { at } 94^{\prime} \cdot 3 \mathrm{C} \text { in } 1930 .
$$

for the length of the $4-\mathrm{m}$ invar bar (Baros plugs). The 1914 N.P.L. certiticate gives $4-\mathrm{m}+0 \cdot 185 \mathrm{~mm}$, whence the rate of growth has been $0^{\circ} \%$ per $1,000,000$ per annum.
(g) 4-minvar. Edge \mathbf{B} minus Baros plugs.--

General mean $=\quad+0.0008 \mathrm{~mm}$
cf. $0 \cdot 000$ in N.P.L. certificate.
\therefore Length of erge B at $24^{\circ} \cdot 3 \quad=4 \mathrm{~m}+0.2166 \mathrm{~mm}$
and at $28^{\circ} \mathrm{C}$. (required below) it is $4 \mathrm{~m}+0 \cdot 2376 \mathrm{~mm}$
(h) 4-in invar. Edge B minus Edge A.-

General mean $\mathbf{B}-\mathbf{A}=+\mathbf{0 . 0 0 3 8 m m}$. cf. $+0 \cdot 003$ in N.P.L. certificate.
(i) 94-metre Comparator.-The six invar wires were hung in the comparator on two different days in August 1930, and again in April 1931 after the field work, the $4-\mathrm{m}$ invar bar being stepped along the comparator before and after the comparison of the wires. The constancy of the length of the comparator depends on an invar tape to which the terminal and intermediate marks are clamped. Its coefficient of expansion has not been directly determined, but it is given with sufficient accuracy by the observations themselves, as shown in Plate III, from which it is seen that the length increases with temperature at the rate of about 0.023 mm per 24 m per ${ }^{\circ} \mathrm{C}$.
(j) Lengths of $\mathbf{~} \mathbf{4}-\mathrm{m}$ Wires.-

Date	Wire	Temperature	Wire minus Base. Observed	Length of wire at $28^{\circ} \mathrm{C}$.
19.8-30	- 243	$28^{\circ} \cdot 2$	-1.341mm	24m-0.383mm
	244	$28 \cdot 1$	-2.665	-1.709
	247	28.8	+0.095	+1.067
	248	29.0	+0.182	+1.161
	249	28.4	-0.043	+0.923
	252	28.5	$+1.400$	+2.366
22-8-30	243	29.3	$-1 \cdot 341$	-0.392
	244	29.0	-2.675	-1.721
	247	28.3	+0.079	+1.040
	2.14	29.3	+0.156	+1.118
	2.19	24.6	-0.035	+ 0.936
	258	28.6	+1.386	$+2 \cdot 354$

Date	Wire	Temperature	Wire minus Base. Observed	Length of wire at $28^{\circ} \mathrm{C}$.
21-4-31	243	$30^{\circ} \cdot 6$	-1.322mm	$24 \mathrm{~m}-0.321 \mathrm{~mm}$
	244	30.8	-2.745	$-1 \cdot 743$
	247	$30 \cdot 2$	+0.035	+1.040
	248	$30 \cdot 2$	+0.101	$+1.110$
	249	$30 \cdot 1$	-0.002	+1.013
	252	$30 \cdot 2$	+1.395	$+2 \cdot 403$
23-4-31	243	$30 \cdot 3$	-1.348	-0.354
	244	$30 \cdot 4$	-2.748	-1.753
	247	$30 \cdot 2$	± 0.016	+1.021
	248	$30 \cdot 2$	+0.114	+1.123
	249	$30 \cdot 1$	-0.006	+1.009
	252	$30 \cdot 0$	+1.420	$+2 \cdot 423$

The results may then be summarized as follows, where the figures are millimetres of excess or defect on 24 m at 28 C .

		$\begin{aligned} & \text { O } \\ & \infty \\ & \infty \\ & \underset{\sim}{1} \end{aligned}$	O 0 0 d d		-1 + +1 \vdots		
243	-0.61	-0.38	-0.38	$+0.23$	-0.32	-0.35	+0.04
244	-1.92	-1.71	-1.72	+ $0 \cdot 20$	-1.74	-1.75	-0.03
247	+ 0.6 Fis	$+1.07$	$+1.04$	+0.39	$+1 \cdot 04$	+1.02	-0.02
248	+0.78	$+1 \cdot 16$	$+1.12$	+0.36	+1.11	+1.12	-0.03
249	+0.65	+0.92	10.94	+0.38	$+1.01$	+1.01	10.08
252	+ 1.96	$+2 \cdot 37$	$+2 \cdot 35$	$+0 \cdot 40$	$+2 \cdot 40$	$+2 \cdot 42$	+0.05

Note:- A discrepancy of 0.024 mm per 24 m is 1 part in $1,000,000$.
The talle shows that the growth between 1908 and 1930 has heen similar in wires having common origins, viz:- about 0.4 in $1,000,000$ per year in the case of $248 \& 24$, and 0.7 in the others. Its constancy verifies the accuracy of the comparisous. The changes during the field season (the first) have been less regular, as might be expected, but it is surprising that wires 249 and 252 , which wrye used as field standards, should have changed so much more than the other four. Among the latter the mean change has only been $1: 2,500,000$, which is very satisfactory, and the daily comparisons with the field standards have consequently been ignored, and the mean of the August aud April standardizations has been accepted, as follows :--

(k) Accuracy.-The least accurate part of the work is believed to have been the standardization of the $4-\mathrm{m}$ invar bar in terms of the nickel and silica metres, the difference being $2: 1,000,000$. It is thought that the silica determination is considerably the more reliable, and that the weighted mean is very unlikely to be wrong by more than $1: 1,000,000$. The errors in the other comparisons are much less considerable. Thus the N.P.L. certificates are said to be correct to 0.0003 mm (1 in $3,000,000$) : the comparisons between the centre marks and edges $A \& B$ of the $4-m$ invar bar agree with the old N.P.L. certificates within $1: 4,000,000$ and the close agreement between the Angust and April standardizations of the four field wires indicates that the error of the mean wire on account of this comparison and of ill-treatment in the field is very unlikely to exceed $1: 2,000,000$.

Taking all sources of error into account it is thought that the error of the mean wire is less than $1: 1,000,000$, and that it is very unlikely to exceed $1 \frac{1}{2}: 1.000,000$.
2. Longitude.-The record of the longitude of Dehra Dün was maintained, as in previous years, by bi-weekly observations of local time with the bent transit, combined with the reception of the
 wireless time signals. The time observer was Mr. H. C. Banerjea. The resulting values of the longitude are given in Table 1 , monthly means being as follows :-

			Bordeaux			Rugby
				m	s	s
Suptember	19:30 ..	\ldots	5	19	$11 \cdot 80$	11.80
October	\ldots			11.75	$11 \cdot 72$
Nuvember	\ldots			11.74	11.75
December	\cdots	\ldots			$11 \cdot 81$	11.75
January	1931 ...	\ldots			11.76	11.76
February	\ldots			11.71	11.75
March	\ldots			11.73	11.74
April	\cdots			$11 \cdot 76$	11.75
May	\ldots			11.75	11.74
June	\ldots			11.73	11.72
July				$11 \cdot 64$	11.63
August.	..	-			11.69	11.71

The value of the longiturle of Dehra Dūn obtained in 1926 was $5^{h} 12^{\prime \prime} 11^{\text {s }} 79$, and this value has on the whole been confirmed by work carried out since, although considerable apparent fluctuations have occurred, as shown in Geodetic Report Vol. VI, Platr II. The figures
given above serve to extend this diagram another year, and it is noticeable that the low values obtained in 1930 seem to be continuing.

The value of the bubble correction was kept very small throughout the year, and any doubt as to the value of one division of the bubble has no significance.

The Rieffer clock ran regularly during the year, with no leakage of the clock case, except that the pressure suddenly rose to atmospheric on Dec. 7 th. The error, rate, pressure and temperature are given in Table 2.

The Shortt clock has been erected and started, but has not been put into regular use. Stoppages have occurred on account of adhesion between the arm of the synchronising switch and the core of the magnet which pulls it down. Similar trouble has also occurred with the resetting lever in the master clock. The trouble is a trivial one, but pressure of other work has prevented much attention being given to the inatter.
3. Latitude variation.-As stated in last year's report a variation of latitude programme was begun in February 1930. The observations have heen continued by Computer Jagdish Behari Mathur, and the results of the first year's work have been computed. The results, which are given on page 28, are thought to indicate that a sufficient degree of accuracy is being maintained, although several years' work will be necessary before final results can be given.

Table 3 shows the groups which have been used to form the chain*, and the mean differences of latitude as determined by successive pairs of groups. The final closing error of $0^{\prime \prime} \cdot 22$ is thought not to be excessive. It has bepn distributed in accordance with the prolable errors given.

Table 4 shows the monthly mean values of latitude, and their departures from the annual mean. The variation indicated is not dissimilar to that given by the three international stations, although the amplitule given by Dehra is considerably larger.

The work is being continued.
4. Seismograph and Meteorological observations.The Omori ssismograph was in operation thronghout the year, an exceptionally large number of earthquakes being recorded, of which a full list is given in Table 5. Good records were obtained of the Burma earthguake of 28-1-81, the very great earthquake of 11-8-81 in Mongolia of which no local reports have yet been received, and of the series of shocks near Quetta in August 1931.

Meteorological observations have been made at 8.00 and 17.00 hours throughout the year.
5. Miscellaneous work.-A new model of the Hunter Short Base (see Plate VIII) has been constructed, and six sets have been

[^7]obtained from the Mathematical Instrument Office, Calcutta. The descriptive booklet. Departmental Paper No. 10, has been brought un-to-late and re-written by Mr H. C. Banerjea.

The levels of the levelling party were tested, and the standard tapes standardized, before and after the field season. Four new typers of level and one rustless steel tape were tested and reported on.

TABLE 1.-Variation of Longitude of Dehra Dün from accepted value, as determined from reception of wireless time signals from Bordeaux and Rugby, 1930-31.

* Accepted value of Longitude is $5^{\text {h }} 12^{\mathrm{m}} 11^{\mathrm{n}} 79$ (as determined in 1926).
(Continued)

TABLE 1.-Variation of Longitude of Dehra Dün from accepted value, as determined from reception of wireless time signals from Bordeaux and Rugby, 1930-31-(concld.).

Date (Greenwich)	Observed value ninus accepted value*		Date (Greenwich)	Observed value minus accepted value*	
	Bordeaux	Rugby		Bordeaux	Rugby
1931			1931		
June 5	$\stackrel{s}{*}$	s -0.05	July 15	s -0.08	s $-0^{\prime} 15$
9	\ldots	- 0.04	31	-0.09	-0.14
12	\ldots	-0.04	Aug. 14	-0.10	-0.08
16	\ldots	-0.03	17	-0.09	-0.09
19	-0.02	-0.08	22	-0.09	-0.07
26	-0.09	-0.11	26	-0.12	-0.10
29	-0.09	-0.15			
July 7	-0.13	-0.19			
10	-0.14	-0.18			

* Accepted value of Longitude is $5^{\prime \prime} 12^{m} 11^{3} 79$ (as determined in 1926).

Note:- In the above table one value of the longitude is given by the association of each observation of local time with the wireless signal received at the least interval from it i.e. generally either during the same night or preceding afternoon. Results are give up to August inclusive after which the corrections to the times of emission are not yet available. Individual night's observations have not been smoothed to give a more uniform clock error. The reputed times of emission of the wireless signals have been corrected by the amounts given in the Admiralty Notices to Mariners in the case of Rugby signals, and by the demi-definatif corrections of the Bulletin Horaire in the case of Bordeaux signals. When deducing the longitude from the latter, a correction of $0^{\circ} 02$ has been added to the reputed Greenwich time of emission. on account of this having been computed (by the Bulletin Horaire) on the assumption that the longitude of Paris is $0^{\mathrm{h}} 9^{\mathrm{m}} 20^{5 \cdot} 93$, whereas the more recent value is $0^{\mathrm{h}} 9^{\mathrm{m}} 20^{\circ} 91$ (See La Participation Francaise à la Revision des Longitudes Mondiales, Lambert. p.103). The speed of propagation has been taken to be $300,000 \mathrm{~km}$. per second.

TABLE 2.-Error, rate, temperature and pressure of Riefler clock
No. 450, by the bent transit instrument, at 20 hrs .
Indian standard time, 1930-31.

1		2	3	4	5	6	7	8	
Date		Error	No. of time stars		During preceding period			Remaris	
		North	South	$\begin{gathered} \text { Rate }{ }^{*} \\ \text { per day } \end{gathered}$	Pressure	Tem-perature			
1930			$m \quad s$			s	mm	C	
Oct.	3	+0 31.96	5	5	+0.11	596	$26^{\circ} 6$		
	7	$32 \cdot 45$	5	5	+0.12	596	26.6		
	10	32.75	5	5	+0.10	596	267		
	13	$33 \cdot 14$	5	4	+0.13	596	$26^{7} 7$		
	17	33.60	4	4	+0.12	596	26.7		
	20	33.96	5	5	+0.12	596	26.6		
Nov.	24	$34: 54$	5	5	+0.15	596	26.7		
	28	35.08	5	5	$+0.13$	596	$26^{\prime} 6$		
	4	$36^{\circ} 05$	5	5	+0.14	595	26.5		
	7	36.48	4	6	+0.14	596	26.9		
	11	36.93	5	5	+0.11	596	26.9		
	14	37×27	5	5	+0.11	598	$26 \cdot 6$		
	17	37.53	5	5	+0.09	598	26.6		
	22	38.03	5	5	+0.10	598	$26^{\circ} 6$		
	25	$38 \cdot 29$	5	5	+0.09	598	26.6		
Dec.	1	$38 \cdot 54$	5	5	+0.04	698	$26 \cdot 6$		
	5	38.50	5	5	-0.01	598	$26 \cdot 7$		
	9	36.58	5	5	.	600	26.6	Pressure rose to 710 mm due to	
	11	36.59	5	5	+0.01	600	26.7	leakage on 7 th.	
	16	36.68	5	5	+0.02	600	26%	It was adjusted	
	19	36.77	5	5	+0.03	600	26.6	and reduced to 600 mm on 8 th	
	22	36.92	5	5	+0.05	600	26.6	Dec.	
	26	37.13	5	5	$+0.05$	600	26.5		
	31	37.39	5	5	+0.05	599	26.6		
1931									
	5	$37 \cdot 51$	5	5	+0.02	598	$26 \cdot 5$		
	8	37.66	5	5	+0.05	598	26.6		
	12	37:83	4	5	+0.04	598	$26^{\circ} 7$		
	15	38.04	5	5	+0.07	598	26.4		
	17	38.17	5	5	$+0.07$	598	26.5		
	20	38'28	4.	6	+0.04	598	267		
Feb.	26	38.61	5	6	+0.06	598	26.6		
	29 4	38.70 38.88	5	6	+0.03	598	$26^{\circ} 6$		
	4	$38 \cdot 88$	5	7	+0.03	598	$26^{\circ} 6$		

TABLE 2.-Error, rate, temperature and pressure of Riefler clock
No. 450, by the bent transit instrument, at 20 hrs .
Indian standard time, 1930-31-(contd.).

* $+^{\text {r }}$ rate $=$ gaining, $\quad{ }^{\text {ve rate }}=$ losing
(Continued)

TABLE 2.-Error, rate, temperature and pressure of Riefler clock
No. 450, by the bent transit instrument, at 20 hrs .
Indian standard time, 1930-31-(concld.).

1		2	3	4	5	6	7	8
Date	Frror		No. of time stars		During preceding period			Remarks
			North	South	Rate* per day	Pressure	Tern-perature	
1931	${ }^{m}$	s			s	mm	C	
July 7	+ 0	46.00	5	5	+0.16	598	$27^{\circ} 0$	
10		46.56	5	5	+0.19	598	$26^{\circ} 7$	
15		47'47	5	4	+0.18	598	268	
31		50.82	5	5	+ $0 \cdot 21$	598	26.9	
Aug. 14		53.55	5	5	$+0.20$	598	26.7	
		$54 \cdot 17$	3	3	$+0 \cdot 21$	598	$26^{\prime} 7$	
22		55.18	6	3	+0.20	598	26.8	
26	0	56.05	5	5	+0.22	598	$26 \cdot 7$	
Sept. 14	1	01.00	4	3	+0.26	598	26.5	
16		01:35	5	5	+0.18	598	$26 \cdot 8$	
18		01.83	5	5	+0.24	598	26.7	
22		02:84	5	5	+ $0 \cdot 25$	598	26.6	
25		03:58	3	3	+0.25	598	$26 \cdot 7$	
30		0.889	6	6	+0.26	598	26.7	

TABLE 3.-Latitude variation
Declination errors of groups

Groups	Right Ascension		Dates	Latitude by 'evening group minus morning
	Evening	Moraing		
[--I]	$\begin{array}{llll} h m & h & m \\ 8 & 18 & \text { to } & 10 \\ 09 \end{array}$	$\begin{array}{ccc} \hline h m & h m \\ 12 & 22 & \text { to } \\ 14 & 50 \end{array}$	2nd Feb, 30 to 6th April 30	$-0 \cdot 13 \pm .03$
II - III	1222 to 1450	1600 to 1804	13th April 30 to 30th May 30	$-0.22 \pm .03$
III -IV	1600 to 1804	1856 to 2054	5th June 30 to 8th Aug. 30	$+0 \cdot 26 \pm .06$
IV-V	18 5h to 2058	2211 to $10-4$	15th Aug 30 to 10th Oct. 30	$+0 \cdot 14 \pm .04$
V-..VI	2211 to 10.4	304 to $51-4$	1st Oct. 30 to 28th Nov. 30	$+0 \cdot 11 \pm .03$
VI -- I	304 to 514	818 to 1009	2nd Dec. 30 to 4th Febs. 1931	+0.06 $\pm .03$
			Closing error	+0. 22

TABLE 4.-LLatitude variation
Preliminary Results

Month		Monthly mean Latitude		Residuals Month minus Year
Fobricary	19:10.	$30^{\circ} 18$	$51 \cdot 68$	+0.15
March	.		$51 \cdot 46$	-0.07
April	,		$51 \cdot 47$	-0.06
May	..		$51 \cdot 38$	-0.15
Jun	\cdots		$51 \cdot 28$	-0.25
Juls	.		$51 \cdot 34$	-0.19
Augint	.		¢1.32	-0.21
Soptember	.,		51.43	$-0 \cdot 10$
Octitur	.		51.79	+ $0 \cdot 26$
Siraember	-•		51.82	+ 0.29
[bomembar	-		$51 \cdot 78$	+ 0.25
Tannaty	1931.		21.6if	+ 0.13
		Annual mean	51.53	...

TABLE 5.-Earthquales recorded at Dehra Dūn during 1930-31.

No.	Date	Indian standard time					$\begin{gathered} \text { Intensity } \\ \text { of } \\ \text { record } \end{gathered}$		Remaris
		lst P. T.	2nd P. T.	Long wave	Maxi. mum	Finish			
	1930	$h \quad m \quad s$	$h \quad m \quad s$	$\pi \mathrm{m}$ ¢	$h \quad m$	$h \quad m$		miles	
1	Oct. 1	$30120+$	$30600 \dagger$	31030	312		slight	2000	
2	, 2	$210910+$	21 $1200+$	211430	2119	2142	slight	1100	
3	, 10	$30930 \dagger$	$31040 \dagger$	31150	313		slight	600	
4	, 10			$61710+$	617		slight		
5	-. 24	163110	163410	$163720+$	1642	1659	slight	1200	
6	, 25	15620	20450	21520	221		moderate	4400	
7				$31500+$	317		slight		
8	Nov. 4	$211140+$	211540	211800	2118	2205	slight	1500	
9	., 10	$04920+$	05720	1 04: 20	118	$225+$	slight	3800	
10	, 10		193330				slight		
11			04920	05640	102	216	great	3400	Destructive in
12	Dic. 2	1234 \%0	123830	124.110	1242	$13 \quad 22$	slight	1400	Japan.
13	. 4						great	\ldots	Iower Birma. Not recorderl.
14	, 8	$134450+$	$134910 \dagger$	$135250+$	13 56	1420	slight	1800	clock stopped.
	1931								
15	Jan. 2	\% 30 30+	$\therefore 10: 30+$	$54820+$	5.50	(i) 24	slight	4.900	
161	- 2	$1534130+$	1: $4.500+$	15) $4930+$			slight	1 fino	
17	" 7	$73600+$	$74.40+$	$75320+$.	\ldots	slight	4300	
18	$\cdots 13$	$21320+$	$22240+$	$24000+$	$24.2+$	323	sligrht	5800	
19	. 15	$74110+$	$7 \quad 5310$	81240	847		great	7600	Mexico.
20	.. 16	$24.300+$	$24930+$	25500	$25 i$	402	slight	2200	
	, 16	$42400+$	4. $2910+$	43350	4. 34	54.5	slight	2200	
22	- 17	$15+00 t$	20120	21250	214	310	slight	4000	
23	- 17	$90640 \dagger$	$\begin{array}{lll}9 & 13 & 10\end{array}$	9 2710	937	1013	slight	4900	
21	, 20	14 59 30	1.5 0020	150110	1501	$1523+$	slight	300	
25	$\cdots 24$	$19.2720 \dagger$	$193320 \dagger$	$19 \quad 3930$	19 47†	+20 12	slight	2800	
21	$\cdots 28$	143 \% 0	14640	14830	153	346	groat	1100	Burma.
	F. 29	30.510	31320	$32040+$	3 31+	454	slight	3000	
24 29	Feh. 3	43400	4.4800	$\begin{array}{llll}3 & 50 & 50\end{array}$	523	705	moderate	5400	New Zenlaud.
	. 10	$650110+$	70150	70440	705	$751+$	slight	1100	
30	, 12	$12300+$	1 24,50	$12720+$		183	slight	800	
31	. 12	112140	$11 \quad 2810$	113730	1141	1228	slight	3400	
22	. 17	f 18 : $30+$		62420		65.3	slight	1300	
23		71700		$74530+$	802	981	mowernte	6300	
3	-. 14	19.3420	194510	19.95	1988	2036	molmerate	3700	
	. 19	$231830+$	+23 $2450+$	23 $3430 \dagger$	+ $2337+$	$+05.5+$	slierlit	3100	
36	.. 20	111120				$1156+$	slight	1:50	
37		151720	152420	$15 \quad 3230$	$15 \quad 34$	15 nct	slight	3500	
,	Mar. 8	72920	73600	74840	754	$821+$	slight	3900	Destructive in the Balkans.

\dagger Recognised with difficulty.

TABLE 5.-Earthquakes recorded at Dehra Dūn during 1930-31-(contd.).

TABLE 5.-Earthquakes recorded at Dehra Dūn during 1930-31—(concld.).

No.	Date	Indian standard time					$\underset{\substack{\text { Intensity } \\ \text { of } \\ \text { record }}}{ }$	弟翤A	Remaris
		1st P. T.	2nd P.T.	Long wave	Maximum	Finish			
		$h \quad n \quad s$	$h \quad m \quad s$	$h \quad m \quad s$	$h \quad m$	$h \quad m$		miles	
75	Aug. 29	$25720 \dagger$			259	321	slight		
76	, 29	1133300	113620	113850	1140	1150	slight	1100	
77	, 29	1875	$190050+$	$190250 \dagger$	1905	1920	slight	1100	Probably near Quetta.
78	, 30	$12300+$		$12750+$	129	135	slight	1100	
79	, 30	$21030+$...	211	225	slight	..	
80	Sept. 6			$111630+$	1121	1138	slight	\ldots	
81	6	200600	$20 \quad 0750$		2012	$20 \quad 23$	slight	700	Q Probably near
82	, 8	214540	$214710 \dagger$...	2150	2206	slight	500) Quetta.
83	, 10	$21750+$			227	259	slight	...	
84	, 21	$80620 \dagger$	$81120+$	81700	818	903	slight	2300	Japan.
85	, 21	16 04. $00+$	160950	161610	1618	1658	slight	2700	
86	" 25	$113840 \dagger$	11 44, 30	$\begin{array}{llll}11 & 51 & 20\end{array}$	1158	$13 \mathrm{58}+$	v. great	2800	
87	, 30	165050	165200	$16 \quad 5300$	1657	1702	slight	400	
88	, 30	$183130+$...	$18 \quad 3310$	1834	1848	slight	400	

\dagger Recognised with difficulty.

Chapter III

TIDES

by Captain G. Bomford, r.e.

1. Tidal observations.-During the year under report registration by automatic tide-gauges was continued at the following stations :—Aden, Basrah, Karächi (Manora), Bombay (Apollo Bandar), Madras, Calcutta (Kidderpore) and Rangoon. These observations were carried out under the supervision of the Survey of India, immediate control of each observatory being entrusted to the local officers of the port concerned. Automatic registrations were also continued at Colombo and Trincomalee under the supervision of the Superintendent Trigonometrical Surveys, Ceylon, who supplied a new value of the mean sea-level at these places.

In addition, the actual times and heights of high and low waters were observed on tide-poles (during daylight only) under the supervision of the local port officials at Bhāvnagar, Chittagong, and Akyab. The day and night observations at Pilakāt or Deserters' Creek (Rangoon River) were discontinued from 1st April 1931.

A complete list of stations at which tidal registrations have been carried out since the commencement of tidal operations in India in 1874, was given in Geodetic Report Vol. V, pages 31 to 33.
2. Inspections.-No inspections were made by the Survey of India. The tidal observatory at Aden was inspected by the Port Engineer during March and May 1931, i.e. before and after the dismantling of the gauge for reconstruction of the observatory. The Bombay gauge was inspected by the Port Trust Surveyor. No inspection reports were received from the port authorities at Basrah, Karāchi, Madras, Kidderpore or Rangoon.

All the automatic records have been continuous and satisfactory except for a long break from 4th March to 18 th May at Aden Observatory, necessitated by the renewal of its structure, a break from 9th Jan. to 27 th April at Basrah due to the removal of the gauge from Tanumah to Wharf A Margil, and a few minor stoppages.
3. Harmonic analysis.-Arrangements were made for the Port Officer, Orissa Ports, to supply the hourly day and night
readings at Chāndbāli and Shortt's Island with a view to the determination of the necessary constants for future predictions of the tides at these places. It is hoped to include these predictions in the tide-tables of the Indian Ocean for 1935. The data for both these ports begin from 1st May 1931.
4. Corrections to predictions.--Tables $1 \& 2$ give the corrections that have been applied to the predicted values of the tides for 1932, in the case of Chittagong and Rangoon respectively. The corrections for Rangoon differ very slightly from those used in the previous year and are similarly derived. In the case of Chittagong a mean correction derived from several years actual and predicted values had hitherto been used for the whole year, but for the 1932 predictions fortnightly corrections have been applied, based on the comparisons of predicted and actual values for the period 1923-30. The corrections used for Kidderpore for 1932 tide-tables are the same as those during the previous year.
5. Tide-tables.-The tide-tables for the year 1932 have been prepared and issued. They contain information similar to that in the previous volume, as reported in Geodetic Repor't Vol. VI. Separate small tide-tables in pamphlet form have also been published for Bombay, the Hooghly River and the Rangoon River. Advance predictions for Suez, Aden, Bushire, Karāchi, Bhāvnagar, Bombay, Mormugao, Colombo, Trincomalee, Madras, Dublat, Chittagong, Elephant Point and Mergui, were sent to the Hydrographer to the Admiralty in December 1930, for inclusion in the 1932 Admiralty tide-tables. Advance predictions for Dublat, Madras, Colombo, Bomhay and Karachi were also sent to the Director of the U.S. Coast and Georletic: Survey in exchange for information received from him.

The amount realized by the sale of tide-tables during the year Puding :30th Srptrmber 1931 was Rs. 6,842-12-0, exclusive of agents' commission and the cost of copies issued gratis.
6. Accuracy of predictions.-Tables 4 to 16 have heen prepared from comparisons made between predicterd and actual times and heights of high and low waters at the 9 stations where automatic tide-gauges were in operation, and the 4 stations at which tide-poles wrye in use. The 1980 predictions for Aden, Basrah, Madras and Kidderpore are practically of the same standard as those of the previous years. Rangoon appears somewhat better, whilst Bombay and Kädehi show a slight deterioration chiefly as regards the number of curors exceeding 30 minutes and 1.0 feet. The greatest differences between the predicterl and actual heights of low water, as registered by the automatic tide-gauges at the riverain ports were as shown in Tallo?

TABLE 1.-Corrections applied to Chittagong for 1932.

Month	Tide	Dates			
		1st-15th		16th-31st	
		$\begin{gathered} \text { Time } \\ m \end{gathered}$	Height ft.	'lime m	Height $f t$.
January	High Low	$\begin{aligned} & +\quad 11 \\ & +\quad 10 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.7 \end{array}$	$+\quad 9$ $+\quad 8$	$\begin{aligned} & +0.2 \\ & +0.7 \end{aligned}$
February	High Low	$\begin{aligned} & +\quad 7 \\ & +\quad 6 \end{aligned}$	$\begin{aligned} & +0 \cdot 2 \\ & +07 \end{aligned}$	$+\quad 7$ $+\quad 5$	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$
March	High Low	a $+\quad 7$ $+\quad 5$	$\begin{array}{r} 00 \\ +0.6 \end{array}$	+ $+\quad 7$ $+\quad$	$\begin{array}{r}00 \\ +05 \\ \hline\end{array}$
April	High Low	$+\quad 7$ $+\quad 9$	$\begin{array}{r} 0.0 \\ +0.5 \end{array}$	+ 10 $+\quad 11$	$\begin{array}{r} -0.1 \\ +0.4 \end{array}$
May	High Low	+ $+\quad 12$ $+\quad 12$	$\begin{array}{r} -0.2 \\ +0.4 \end{array}$	+ 10 $+\quad 12$	$\begin{array}{r} 0.1 \\ +0.7 \end{array}$
June	High Low	$\begin{array}{r}9 \\ +\quad 12 \\ \hline\end{array}$	$\begin{aligned} & +0.3 \\ & +1 \cdot 0 \end{aligned}$	$+\quad 10$ $+\quad 10$	$\begin{aligned} & +0.1 \\ & +0.8 \end{aligned}$
Jaly	High Low	$+\quad 10$ $+\quad 8$	0.0 +0.6	+9 $+\quad 9$	+0.1 +0.7
August	High Low	$+\quad 9$ $+\quad 9$	+0.2 +0.8	+12 $+\quad 13$	+0.1 +0.8
September	High Low	+ 15 +16	+0.1 +0.8	+ 19 $+\quad 19$	+02 +09
Octobel	High Low	+22 $+\quad 22$	+0.4 +0.9	$+\quad 22$ $+\quad 23$	$+0 \cdot 1$ +0.7
November	High Low	$+\quad 22$ $+\quad 23$	+01 +0.6	+ 19 $+\quad 18$	$\begin{array}{r}+02 \\ +07 \\ \hline\end{array}$
Decomber	High Low	+ 16 $+\quad 14$	$\begin{aligned} & +03 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +13 \\ & +\quad 12 \end{aligned}$	$\begin{aligned} & +02 \\ & +0.7 \end{aligned}$

The above corrections are based on the mean fortnightly results of comparisons between predicted and actual times and heights from 1923 to 1930 .

TABLE 2.-Time corrections applied to Rangoon for 1932.

Month	T'ide	Dates					
		1st-5th	6th-10th	11th-15th	16th-20th	21st-25th	26th-31st
		minutes	minutes	minutes	minutes	minutes	minutes
January ...	High Low	-11 $-\quad 8$	-13 -10	-16 -13	-18 -15	-20 -17	-21 -17
February ...	High Low	-22 -17	- 22	-22 -17	-22 -17	- 22 -17	-21 -16
March ...	High Low	-20 -16	-19 -15	-17 -13	-15 -12	-14 -11	-13 -10
April ...	High Low	19 $-\quad 9$	- 11	$-\quad 9$ $-\quad 6$	-7 $-\quad 4$	$-\quad 6$ $-\quad 3$	$-\quad 5$ $-\quad 3$
May ...	High Low	$-\quad 4$ $-\quad 2$	$-\quad 4$ $-\quad 2$	$-\quad 5$ $-\quad 4$	$-\quad 6$ $-\quad 5$	-6 $-\quad 6$	$-\quad 5$ $-\quad 6$
June ...	High Low	-5 -6	$-\quad 4$ $-\quad 6$	-7 $-\quad 7$	-10 $-\quad 8$	-13 $-\quad 9$	-13 -10
July ...	High Low	-13 -10	-13 -11	-16 -13	-18 -15	-20 -16	-18 -16
August ..	High Low	-17 -16	-16 -16	-18 -13	-19 -11	$-\quad 20$ $-\quad 9$	- 16 $-\quad 8$
September	High Low	-12 $-\quad 7$	$-\quad 9$ $-\quad 6$	$-\quad 7$ $-\quad 4$	$-\quad 5$ $-\quad 2$	$-\quad 3$ $-\quad 1$	$-\quad 3$ $+\quad 1$
October	High	$-\quad 2$ $+\quad 2$	$-\quad 2$ $+\quad 3$	0 $+\quad 6$	$+\quad 1$ $+\quad 8$	$+\quad 2$ $+\quad 10$	$+\quad 4$ $+\quad 11$
November	High Low	5 $+\quad 12$	6 $+\quad 12$	$+\quad 6$ $+\quad 11$	7 $+\quad 10$	$+\quad 7$ $+\quad 9$	+ $+\quad 8$ +
December	High Low	$+\quad 5$ $+\quad 7$	$+\quad 4$ $+\quad 6$	+ 1 $+\quad 3$	- 2	$-\quad 5$ $-\quad 2$	$-\quad 8$ $-\quad 5$

The above corrections are based on the mean fortnightly results of the comparisons between predicted and actual times from 1926 to 1930.

TABLE 3.--The greatest differences between the predicted and actual heights of low water for 1930 at riverain ports were as follows:-

W. ${ }_{\text {曷 }}^{\text {d }}$	Port		Predictod minus actual in feet	Date
1	Kidderpore Rangoon Bastah			Morning 19th Sept. 1930.
2		\ldots	$+3 \cdot 5$ $-2 \cdot 3$	Afternoon 12th May 1930.
3		.	$+3 \cdot 9$	Morning 10th June 1930.

TABLE 4.-Mean errors E_{1} and E_{2} for 1930.
ADEN

TABLE 5.—Mean errors E_{1} and E_{2} for 1930.
BASRAH

[^8]TABLE 6.-Mean errors E_{1} and E_{9} for 1930.
KARĀCHI

TABLE 7.-Mean errors E_{1} and E_{2} for 1930.
bHĀVNAGAR

[^9]TABLE 8.-Mean errors E_{1} and E_{2} for 1930.
BOMBAY (APOLLO BANDAR)

- E_{1} is with regard to aign: E_{q} is withnut regard to sign

TABLE 9.-Mean errors \boldsymbol{E}_{1} and E_{2} for 1930.
colombo

* E_{1} is with regard to sign : E_{2} is without regard to sign.

TABLE 10.-Mean errors E_{1} and E_{2} for 1930.
TRINCOMALEE

- E_{1} is with regard to sign : E_{1} is without regard to sign.

TABLE 11.-Mean errors E_{1} and E_{2} for 1930.
madras

PERIOD 1930	MEAN ERRORS (Predicted-actual)												Number of errors exceeding			
													30 minutes of time		0.4 feet of height	
	$E_{1}{ }^{*}$								$\mathrm{E}_{2}{ }^{*}$							
	Tlime	H. W	Hei		l'im	L.	Heis		H. W. Time Ht.		$\underset{\text { Time }}{\text { L. } W_{t .}}$		垵		安	\checkmark
		utes				tes	f		minutes		minutes					
	+		+	-	$+$		+	-								
Jan. 1-15	$7 \cdot 4$		0.0		$5 \cdot 2$		$0 \cdot 1$		$8 \cdot 8$	$0 \cdot 1$	6.8	$0 \cdot 1$	0	0	0	0
16-31	$5 \cdot 4$		$0 \% 2$		$5 \cdot 9$		$0 \cdot 3$		6'9	0.2	6.5	$0 \cdot 3$	0	0	0	1
Feb. 1-15	109			$0 \cdot 1$	8.8			$0 \cdot 1$	113	$0 \cdot 2$	96	$0 \cdot 2$	0	0	0	0
$16-28$	47			$0 \cdot 5$	54			0.4	$7 \cdot 5$	0.5	$7 \cdot 4$	$0 \cdot 4$	0	0	12	6
Mar. 1-15	125			$0 \cdot 4$	$10 \cdot 7$			0.3	12.9	$0 \cdot 4$	107	$0 \cdot 3$	0	0	10	7
16-31	3.4			$0 \cdot 3$	33			$0 \cdot 3$	$7 \cdot 1$	$0 \cdot 3$	6.6	$0 \cdot 3$	0	0	4	3
April 1-15	10'			$0 \cdot 2$	97			0.2	$10 \cdot 5$	$0 \cdot 2$	$10 \cdot 4$	$0 \cdot 2$	0	0	3	4
16-30	$2 \cdot 8$		0.0		73		$0 \cdot 1$		$5 \cdot 8$	$0 \cdot 1$	9.1	$0 \cdot 1$	0	1	0	0
May 1-15	$4 \cdot 6$			$0 \cdot 1$	4.5		$0 \cdot 1$		$5 \cdot 9$	$0 \cdot 2$	6.6	$0 \cdot 2$	0	0	0	1
16-31	$0 \cdot 1$			$0 \cdot]$	20			$0 \cdot 1$	5.4	$0 \cdot 1$	5:3	0.1	0	0	0	0
June 1-15	43		$0 \cdot 1$		3.0		$0 \cdot 2$		59	$0 \cdot 2$	48	$0 \cdot 2$	0	0	0	0
16-30	7.7		$0 \cdot 1$		$7 \cdot 8$		0.2		$8 \cdot 3$	$0 \cdot 1$	8.0	$0 \cdot 2$	0	0	0	1
July 1-15	$3 \cdot 9$		$0 \cdot 1$		4.8		$0 \cdot 2$		63	0.2	$5 \cdot 1$	$0 \cdot 2$	0	0	0	1
16-31	33			$0 \cdot 1$	2'1			$0 \cdot 1$	$4 \cdot 4$	02	3.7	0.2	0	0	1	2
Aug. 1-15	5.5			$0 \cdot 2$	65			$0 \cdot 1$	$6 \cdot 9$	0.2	6.6	0.2	0	0	0	0
- 16-31	$0 \cdot 3$			03	00			03	41	03	$4 \cdot 6$	0.3	0	0	3	3
Sept. 1-15	$5 \cdot 2$		$0 \cdot 0$		$3 \cdot 9$		$0 \cdot 1$		6.3	$0 \cdot 1$	$5 \cdot 9$	$0 \cdot 2$	0	0	0	0
16-30	1:3		$0 \cdot 2$		0.1		$0 \cdot 3$		61	$0 \cdot 2$	6.0	$0 \cdot 3$	0	0	4	4
Oct. 1-15		29	0.2			22	$0 \cdot 3$		6.5	0.2	6.8	$0 \cdot 3$	1	1	3	8
16-31	$4: 2$			02	5.4			$0 \cdot 1$	67	0.2	8.1	$0 \cdot 2$	0	1	5	0
Nov. 1-15	6.2			$0 \cdot 3$	43			03	$7 \cdot 4$	03	78	03	0	0	11	8
16-30		$2 \cdot 4$		0.6		13		05	12'4	0%	93	$0 \cdot 5$	2	1	19	16
Dec. 1-1.5		$6 \cdot 4$	00			$8 \cdot 5$	0.0		96	$0 \% 3$	$11 \cdot 2$	$0 \cdot 2$	0	0	2	3
16-31		129	00			12:3		$0 \cdot 0$	14:2	$0 \cdot 2$	123	$0 \cdot 2$	0	0	0	0
Tutala ..	1044	250	$0 \cdot 9$	$3 \cdot 4$	1007243		19	$2 \cdot 4$	$187 \cdot 2$	$5 \cdot 6$	1792	57	3	4	$77 \mid 68$	
Meang...	+33		-0.1		$+3 \cdot 2$		-0.0		$7 \cdot 8$	0.2	$75,0.2$					

${ }^{*} E_{1}$ is with regard to sign : E_{2} is without regard to sign.

TABLE 12.-Mean errors E_{1} and E_{2} for 1930.
KIDDERPORF:

PERIOD 1930	MEAN ERRORS (Predicted-actual)											
	E_{1}							E_{2} *				
	Time	H. W.	Height	Time	L. W.	Height		$\operatorname{Time}_{\text {H. }} \mathrm{W}_{\text {H. }}$		$\underset{\operatorname{Time}}{\mathrm{L} .} \mathbf{W} .$		
	minute	-	fieet	minutes		feet		minutes		minutes	feet	
	+	-	+ -	+		+	-					
Jan. 1-15	$5 \cdot 0$		0%	42		$0 \cdot 4$		13%	$0 \cdot 2$	$7 \cdot 4$	05	
16-31	$14 \cdot 7$		$0 \cdot 1$	110		0.6		157	$0 \cdot 4$	170	0.7	
Feb. 1-15	17:3		$0 \cdot 1$	$6 \div$		$0 \cdot 4$		173	0.4	12.2	05	
16-28	19*2	i	$0 \cdot 4$	17\%		$0 \cdot 3$		194	06	193	06	
Mar. 1-15	15	!	$0 \because$	8:3		$0 \div$		1505	04	$12 \cdot 2$	0.4	
16-31	$10 \cdot 4$		0%	34		0.0		$13: 4$	0%	$13 \cdot 9$	05	
April 1-15	8.4		$0 \cdot 1$		44	0:3		120	06	$12 \cdot 2$	05	
16-30	203		03	$3 \because$		$0 \because$		128	0.4	10.6	03	
May 1-1.5	$10 \cdot 1$		0'6		79	03		154	08	$12 \cdot 8$	05	
1ti-31	147		$0 \cdot 6$	$16 \cdot 4$		$0 \cdot 0$		20'5	07	$18 \cdot 1$	03	
June 1-15	${ }^{6}$		$0 \cdot 1$	$1 \cdot 1$			$0 \cdot 0$	13.4	03	12.8	0.4	
16-30	8.5		01	7:5		0%		117	0:3	$10 \cdot 4$	0.4	
Inly 1-1.	20		0	9×2		$0 \cdot 9$		13:3	$0 \cdot 9$	$13 \cdot 4$	10	
115.31	$10 \cdot 8$		00	$5 \cdot 4$		07		125	0%	$13 \cdot 2$	$0 \cdot 8$	
Aur 1-1.5	$13 \cdot 3$		- 03	161		10		124	$0 \cdot 5$	$18 \cdot 6$	1.0	
\|6i.31					59	$0 \cdot 9$		$11^{\prime 2}$	05	16.1	09	
Sept. 1-15	3		108	50		16		141	$0 \cdot 8$	11'1	$1 ' 6$	
16i.3)		16	$10 \cdot 8$		$\because 6$	18		11'5	111	$12 \cdot 3$	1.8	
Oct. 1.1.7		2.6	$10 \cdot 2$		96	$1 \cdots$		$12 \cdot 2$	$0 \cdot 3$	153	1×2	
18.0. 31		π	$0 \cdot 1$		78	1'6		94	$0 \cdot 5$	$22 \cdot 2$	16	
Ners 1-1\%		74	$0 \cdot 1$		101	1.1		9	$0 \cdot 5$	12'2	$1 \cdot 1$	
14i-30		10	10×4		14		$0 \cdot 0$	$9 \cdot 2$	$0 \cdot 8$	$13 \cdot 5$	0.5	
Dec. 1.15		12	$0 \cdot 1$		120	04		$9 \cdot 7$	$0 \cdot 2$	124	$0 \cdot 4$	
$11 ;-31$	17	-	0.2	8.7		$0 \cdot 1$		137	04	$13 \cdot 0$	0%	
Totala	1721	27.9	$\\| 3781: 3$	125\%	(6) 6	143	00	319:3	$12 \cdot 8$	332\%2	18.0	
$\\|_{\text {fay }}$		60	$\therefore-00$		2\%	$1+0$	6	133	$0 \cdot 5$	13.8	0.8	

- E_{1} is with regard to sign : E_{2} is without regard to sign.

TABLE 13.—Mean errors E_{1} and E_{2} for 1930.
Chittagong

- E_{1} is with regard to sign : E_{2} is without regard to sign.

TABLE 14.-Mean errors E_{1} and E_{2} for 1930.
AKYAB

- E_{1} is with recird to sign: E_{2} is without regard to sign.

TABLE 15.-Mean errors E_{1} and E_{2} for 1930.
elephant point (pilakàt creek)

$\begin{gathered} \text { PERIOD } \\ 1930 \end{gathered}$	MEAN ERRORS (Predicted-actual)												Number of errors exceeding			
	$\mathrm{E}_{1}{ }^{*}$								$\mathrm{E}_{3}{ }^{*}$							
	Time	H.	Heig	ht	Time	I.	Height		$\underset{\text { Time }}{\text { H. Wt. }}$		$\begin{array}{\|c\|c\|} \|c\| & \text { L. W. } \\ \text { Time } \\ \text { minutes } & \text { feet } \\ \hline \end{array}$			+		-
	min	n	frer		mi	Ps		feet	minute*	feet						
	+		t				+	-								
тап. 1-15	28.1			0:3	17:3		0.5	5	$28 \cdot 1$	$0 \cdot 5$	$18 \cdot 1$	$0 \cdot 6$	13	6	3	3
16-31	290			$0 \cdot 2$	23.7		0.5		29.0	06	24.0	0.6	12	10	3	4.
Fcb. 1-15	$38 \cdot 1$			0.2	29.6		$0 \cdot 1$		$38 \cdot 1$	$0 \cdot 4$	$29 \cdot 6$	$0 \cdot 3$	22	15	2	1
$16-2 \mathrm{~K}$	34*			$0 \cdot 1$	$31 \cdot 9$		$0 \cdot 2$	2	$35 \cdot 2$	$0 \cdot 4$	$31 \cdot 9$	06	17	15	2	4
Mar. 1-15	$41^{\prime} 6$			03	29%		$0 \cdot 1$	1	4.16	$0 \cdot 4$	293	$0 \cdot 5$	23	14	1	0
16-31	26.9			$0 \cdot 6$	235			$0 \cdot 2$	303	07	24.0	04	18	6	8	1
April 1-15	29.2			$0 \cdot 4$	$18 \cdot 2$			0.0	29.2	$0 \cdot 4$	18.6	$0 \cdot 4$	14	3	0	0
16-30	341			03	31.7		$0: 3$	3	34:8	03	317	0	20	13	0	4
May 1-15	26.5			0.4.	19\%		$0 \cdot 1$	1	265	$0 \cdot 5$	197	0%	12	6	2	1
$117-31$	ד\%			0%	$24: 1$			03	287	0%	24.3	$0 \cdot 5$	11	9	4.	2
June 1-15	239			$0 \cdot 1$	$15: 3$		$0 \times$		239	04	15%	$0 \% 6$	6	5	3	6
16-30	26:3			$0 \cdot 2$	18.2			$0 \cdot 2$	2103	$0 \cdot 4$	18י2	10.4	8	2	0	2
July 1-15	104			$0 \cdot 2$	$11 \cdot 1$		$0 \cdot$		120	0%	145	07	0	3	0	7
16-31	30%			$0 \cdot 1$	$16 \cdot 1$			$0^{\circ} 1$: $10 \cdot 5$	$0: 3$	16.4	04	13	4	0	0
Alug. 1-15	18.8			$0 \cdot 7$	$15 \cdot 2$		$0 \cdot 0$		$19 \cdot 1$	0.7	18.0	$0 \cdot 4$	4.	3	8	1
- 16-31	166		$0 \cdot 1$		56			0	$17^{1} 1$	04	124	0%	4	0	1	0
Sept. 1-15	11:			$0 \cdot 2$	74		$0 \cdot$		141	04	110	0%	1	1.	2	3
16-30	150			0.0	37			$0 \cdot 2$	$17 \cdot 1$	03	104	0%	3	0	0	5
Oct, 1-15	79			$0 \cdot 2$		19	0%		121	$0 \cdot 2$	\%	$0 \cdot 6$	2	0	0	5)
16-31	34			$0 \cdot 2$		$7 \cdot 0$		00	$8 \cdot 6$	$0 \cdot 2$	129	$0 \cdot 5$	1	0	0	f
Nor. 1-15	$1: 3$			$0 \cdot 8$		11.2		0:3	6.6	0.8	114	$0 \cdot 4$	0	0	7	0
16-30	51			$0 \cdot 4$		7.0		$0 \cdot 2$	$6 \cdot 1$	0\%	1211	$0 \cdot 6$	0	0	1	6
Dre, 1-15	$4: 3$			0.4		1.07	$0 \cdot 1$		$5 \cdot 4$	0:5	12'7	03	0	2	1	0
16-31	$22 \cdot 6$			$0 \% 6$		$0 \cdot 9$	$0 \cdot 1$		296	07	$14 \cdot 8$	$0 \cdot 4$	9	3	7	3
Totals	5120				(3439 ${ }^{4} \mathbf{3 4} 7\|136\| 15 \mid$				$5+3.0 \mid 10 \cdot 9$		$4.38 \cdot 4,110 \mid$		$213: 120$		$5 \pi!c$	
$M_{\mathrm{LANA}^{\prime}}$	$+213$		-0.3		+ 127		$\mid+01$		226	0.51	$\begin{array}{l\|l\|} \hline 18: 3 & 0 \% \\ \hline \end{array}$					

- E_{1} is with regard to sign : E_{2} is without regard to sign.

TABLE 16.-Mean errors E_{1} and E_{2} for 1930.
rangoon

E_{1} iv with regard to gign: E_{2} is without regard to sign.

Chapter IV

DEVIATION OF THE VERTICAL

Section I
\section*{Latitude Detachment}

hy Captain G. Bomford, r.e.

1. Summary.-A detachment under Mr. R. B. Mathur, b.a., undertook the observation of astronomical latitudes at 44 stations lying at intervals of about 10 miles along the meridian 75° E., between Ajmer (latitude $26^{\circ} \mathrm{N}$.) and the Banihā Pass (latitude 33° 30^{\prime} N.). Combining these observations with those of Major Glennie's 1925 season in Kashmir, and with two stations of the De Filippi expedition, we now have an accurate geoidal section from the crest of Sir S.G. Burrard's "Hidden Range" in the south, through the area of deficiency at the foot of the Punjab hills, through the Pir Panjāl, Srinagar Valley and Great Himàlaya, almost to the south edge of the Kara-koram.
2. Programme.-Between latitudes 28° and $32^{\circ} 80^{\prime}$ ohservations were made at all the stations on the eastern flank of the Gurhãgarh Moridional Series, excep tat 6 stations where latitude had been observed previously. This part of the series consists of short sides (alout 10 miles), and the spacing of the stations is well snited to the olject in view. At the south end of the work, where the series enters more hilly country, it was necessary to observe at one or two "xtra stations between each pair of G.T. stations. These stations were fixed by resection from stations aur points of modern trpographical triangulation. Between latitude $: 22^{\circ}: 30^{\prime}$ and the Banihal Pass, it was also convenient to place the astronomical stations near the Banihāl motor road, and to fix them by resection from surrounding topographical data.

Since only the meridional component of the deflection was heing observed, it was necessary to align the stations as closely as possible along one meridian. In the central part this aligument was strictly followed, but some departures were inevitable at the two ends. 'The general alignment is, however, as moaly meridional as could will be hoped for.

When deciding on the programme of observations it was considered that a large number of comparatively low class observations were much preferable to a lesser number of the highest accuracy. To be undoubtedly correct within 1 second was considered to represent perfection, since when stations are only 10 miles apart this represents an error of only 3 inches in their relative geoidal height, and occasional (casual) errors of 2 seconds were not considered serious. So far as the astronomical observations go, the one-second standard has probably been achieved, since only two stations show a probable error of as much as $\pm 0^{\prime \prime} \cdot 4$, but the fixing of the geodetic position by resection proved troublesome in some places, and it is possible that a few errors of 2 seconds in the deflection may have resulted from this cause.
3. Astronomical observations.- The instrument used was the small Zenith Telescope, on a portable iron stand. This instrument was made by Troughton \& Simms in about 1890. Itz focal length is 30 inches, the diameter of its object glass is $2 \frac{1}{2}$ inches, and it is provided with two bubbles of sensitivity $2^{\prime \prime} \cdot 0$ to one-tenth of an inch It is illustrated in G.T.S. Volume XVIII, Plates $1,2 \&$.

The observations were made by Mr. R. B. Mathur throughout. The programme was to observe about 8 pairs of latitude stars and 1 or 2 deviation stars on each of two nights at each station, which in fine weather represents about 7 hours work in all.

The use of the portable stand saved the necessity for all advance party for building brick pillars. For setting in azimuth, instead of using the meridian mark usually laid out by the advance party, the instrument was set hy an observation to Polaris before observations hegan. A setting from Polaris was made correct to : $^{\prime}$ (minutes) or less withont difficulty, and was checked by comparing the times of transit of the first pair of zenith stars. For obtaining the required accuracy an azimuth "rror of :'s is negligible, provided the stops are so set that the deviation is the same in both positions of the instrument.

The value of the micrometer screw was determined before and after the seasom, and oreasional check values have been obtained br solution from the discrepancies between values of latitude as ol tained from different star pairs at one station. The values obtained have been satisfactorily constant, and one value has been accepted throughout. The north and south stars in the programme have been kept sufticiently well "balanced" to ensure that no sprions doubt can arise from possible error in the micrometer value.

The discrepancy between the first and second night's ohservations at each station, and the probable error as deduced from the accorlance of different star pairs, are given in Table 1, page 51.
4. Geodetic fixing.-In the central part of the work (32 stations) the astronomical station was in the immediate vicinity of a G.T. Station* and the geodetic latitude was determined without

[^10]TABLE 1．—Latitude Observations．Zenith Telescope，1930－31．

Station		$\begin{aligned} & \text { 志 } \\ & \text { 易 } \\ & \text { 崮 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{7} \\ & \text { 营 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Astronomical Latitudes				Geodetic Latitudes		
				1st night	2nd night	Diff．	p．e．	Resection	P．T．	Accepted §
		feet	－，	－，＂	－．＂	＂		－，＂	－＂	－＇ 1
Banihàl Pass	\cdots	9200	$75 \quad 13$	$333017 \cdot 92$	$\begin{array}{r}33 \quad 3016 \cdot 11 \\ \hline 21\end{array}$	$1 \cdot 81$	± 0.33		333029	33 30 30 28.2
Nachilani	．．．	5000	11	$2122 \cdot 3$ ？	$2121 \cdot 95$	$0 \cdot 37$	$0 \cdot 17$	$2154 \cdot 3$	2152	332153.2
Rämban	．．．	2100	15	$1339 \cdot 73$	$1339 \cdot 41$	$0 \cdot 32$	0.25	$1412 \cdot 7 \dagger$	1413	$331412 \cdot 7$
Chineni	\ldots	4000	17	0157.38	$0157 \cdot 74$	$0 \cdot 36$	0.19	$0233.4{ }^{*}$	0231	330232.2
Dramthal	．．．	3800	15	$330047 \cdot 80$	$330047 \cdot 90$	$0 \cdot 10$	$0 \cdot 28$	3301 23．7＊	330120	330121.8
Udhampur	．．	2500	08	$325516 \cdot 81$	$325516 \cdot 22$	$0 \cdot 59$	$0 \cdot 16$	$325551 \cdot 6{ }^{*}$	325552	325551.8
Suruin Sar	．	2100	03	45 38．73	$4538 \cdot 39$	$0 \cdot 34$	0.23	$324602 \cdot{ }^{*}$	324604	324603.3
Gurhăgarh H．S．	．．．	2031	02	$3741 \cdot 37$	$3741 \cdot 91$	$0 \cdot 54$	$0 \cdot 18$			$323759 \cdot 94$
Bhüru－Chak T．S．	．．．	1053	07	$2641 \cdot 67$	$2643 \cdot 14$	$1 \cdot 47$	0.32			$322655 \cdot 89$
Atalgarh T．S．	\ldots	143	06	$1838 \cdot 14$	$1837 \cdot 33$	0.81	$0 \cdot 30$			$321844 \cdot 84$
Mailu－Sailn T．S．	\cdots	856	04	$321036 \cdot 86$	$321037 \cdot 07$	0.21	$0 \cdot 15$			$321040 \cdot 06$
Siri T．S．	．．．	845	05	ol 52 37－56	$315237 \cdot 84$	$0 \cdot 28$	$0 \cdot 14$			$315236 \cdot 14$
Clowinda T．S．	\cdots	833	03	4316.48	$4316 \cdot 56$	0.08	$0 \cdot 14$			$314313 \cdot 72$
Dhiri－kot T．S．		789	03	$3456 \cdot 73$	3456.44	$0 \cdot 26$	$0 \cdot 15$			$\begin{array}{llll}31 & 34 & 53 \cdot 52\end{array}$
Kalla T．S．	．．．	784	02	$2610 \cdot 84$	${ }_{26} 10 \cdot 63$	0.21	0.23			$312608 \cdot 72$
Makbu Purāna	\ldots	687	00	$31 \times 646 \cdot 11$	$310646 \cdot 37$	0.26	$0 \cdot 17$		310649	310649
Dalúwäla T．S．		728	03	$3059 \quad 05 \cdot 62$	$8059 \quad 05 \cdot 25$	$6 \cdot 37$	$0 \cdot 20$			305906.89
Daraoli T．S．		759	03		$4835 \cdot 61$		$0 \cdot 14$			$304836 \cdot 17$
Kunandwẽle T．S．	\ldots	745	02	$303939 \cdot 26$	$3937 \cdot 68$	$1 \cdot 58$	0.40			$\begin{array}{llll}30 & 39 & 37 \cdot 85\end{array}$
Lukarwāla T，S． Maihnn S．	\cdots	736	02	$3035 \cdot 62$ 13	$3034 \cdot 83$	$0 \cdot 79$	$0 \cdot 20$			$303033 \cdot 92$
Maihnn S．		730	00	$1310 \cdot 01$	$1310 \cdot 01$	$0 \cdot 00$	$0 \cdot 15$			$301311 \cdot 64$
Kaila Vandar T．S． Gar－Wâli T．S． Tiloka T．S．		727	7500	$3003.45 \cdot 35$	$300845 \cdot 17$	$0 \cdot 18$	$0 \cdot 18$			300348.27
		717	$74 \quad 59$	$295552 \cdot 33$	2955 52－19	$0 \cdot 14$	$0 \cdot 14$			$295553 \cdot 39$
		710	7502	$4901 \cdot 85$	$4900 \cdot 62$	1.23	$0 \cdot 29$			$294903 \cdot 00$
Sirsa $\$$ Bànka S ． Rä̀mgarh S ．		738	7501	$3134 \cdot 34$	$3133 \cdot 60$	0.74	$0 \cdot 17$			$293135 \cdot 39$
	\ldots	710	$\begin{array}{ll}75 & 51 \\ 74 & 58\end{array}$	$2241 \cdot 73$	${ }^{32} 42 \cdot 14$	$0 \cdot 41$	${ }_{0}^{0 \cdot 15}$			292243.51
		69.	$74 \quad 59$		$1303 \cdot 73$		0.33			$291304 \cdot 50$
Stai S． Rangarri S ． Mäkar Thal S．		760	7502	$290102 \cdot 82$	$290102 \cdot 69$	$0 \cdot 13$	$0 \cdot 19$			$290102 \cdot 80$
	．．．	777	74.59	$285326 \cdot 37$	$285328 \cdot 68$	$2 \cdot 31$	0.35			$285326 \cdot 45$
		N：30	7502	$4116 \cdot 52$	$4116 \cdot 71$	$0 \cdot 19$	$0 \cdot 16$			$284117 \cdot 23$
Randülia S ． Gügla Bhar S． Bhimba S．		1038	02	$1804 \cdot 72$	$1805 \cdot 12$	0.40	$0 \cdot 17$			2818 05．45
		1112	75	$28 \quad 0716 \cdot 45$	$280716 \cdot 24$	$0 \cdot 21$	$0 \cdot 16$			$280717 \cdot 51$
		1261	$74 \quad 56$		$274637 \cdot 33$		0.27			$274641 \cdot 78$
Maira Dàs S ． Shami Village Pänchwa H．S．	\cdots	1317	it 54	$27.95 \quad 58 \cdot 24$	35 57．77	$0 \cdot 47$	0.23			2735 59．45
		1600	$\begin{array}{ll}75 & 54 \\ 74 & 01\end{array}$	27.558	2607.37	（ 4	0.28			$272606 \cdot 20$
	\cdots	20.43	$74 \quad 56$	$271330 \cdot 45$	26		$0 \cdot 24$			2713 29－56
Jisri Village Einsirra H．S． Kharkari Village		1300	46		$270+36 \cdot 15$		0.24	$270432 \cdot 3+$	$270429 \pm$	$270432 \cdot 30$
		2403	4	$265430 \cdot 45$	$2 \cdot 0436 \cdot 15$	…	$0 \cdot 15$	27 04 32，		$265425 \cdot 39$
	\ldots	1450	42	－ $4440 \cdot 08$	$264439 \cdot 27$	$0 \cdot 81$	0.24	$264437 \cdot 6^{\circ}$	$264437 \cdot 2$	$264437 \cdot 40$
Narmar Village Gudho H．S． Asapura Village	．．．	1500	42	$3611 \cdot 26$	$263611 \cdot 33$	0.07	$0 \cdot 16$	$263610 \cdot 6 *$	$263608 \cdot 1$	$\begin{array}{llll}26 & 36 & 09 \cdot 3\end{array}$
		9418	46	2808.55			$0 \cdot 33$			$\begin{array}{llll}26 & 28 & 09.92\end{array}$
		1500	47	$1949 \cdot 67$	$261949 \cdot 90$	$0 \cdot 23$	0．16	$261955 \cdot 3 t$	$261955 \ddagger$	$261955 \cdot 3$
Shokli Village Buphi H．S．		1300	50	$1249 \cdot 25$	$261248 \cdot 86$	$0 \cdot 30$	0． 16	$261255 \cdot 8 \dagger$	$261256 \ddagger$	
	\ldots	1878	$74 \quad 49$	$\because 60350 \cdot 16$			$\pm 0 \cdot 4$			2603 55＇43

[^11]difficulty. At the remaining stations the geodetic fixing was made by theodolite resection from topo. triangulation data and also by plan-table resection from the 1 -inch map.

The accuracy of the theodolite resection proved disappointing. The necessary accuracy of angular measurement can of course be obtained without any difficulty even when using the most primitive theodolite, but the identification of old, unvisited, trig. points is not easy. This is especially so in the case of hills viewed from a deep valley. Half a dozen or more points were generally observed, as well as a Polaris or Sun azimuth, and it is apparent from the discordance of the rays (when computed semi-graphically) that in many cases the accepted position is liable to an error of $9^{\prime \prime}$ of latitude. On the other hand, when the plane-table resection is based on several independent pieces of conspicuous detail shown on a modern l-inch map, it is thought that the error of fixing is unlikely to exceed $?^{\prime \prime}$, and wher the theodolite fixing is clearly liable to $?^{\prime \prime}$ error, the mean of the two values has been accepted, as shown in 'rable 1.

The question of geodetic fixing by resection is one of great importance from the point of view of furthering the rapid and inexpensive observation of sections of the geoid. Except in flat country, stations of the primary triangulation are generally the least accessible points of the district in which they lie, and they are generally placed ton far apart for the deflection at their sites to be considered typical of the intervening country. Recourse to minor triangulation is therefore imperative: nor is it objectionable, since an error of less than 1 second (100 feet) represents perfection, and occasional (casual) prrors of 200 or even 300 feet do not really matter. It is, however, often inconvenient to carry the camp and pquipment even to the nearest minor triangulation station or point. The irleal at which to aim is that the detachment should move along a main roarl (preferably by motor car), halting for a day and two nights, or avon less, at whatever intervals may prove most suitable for the work in hand. If coolies have to be engaged and camp moved to a hill top some miles from the road, a day or two will he masted at each station, and progress will he halved.

The difficulty of resection from trig. points was foreseen, and this season's work has shown that it is not easily overcome, although the agrenment with the plane-table fixings is sufficiently good to show that results haserl on cither would not have been very seriously wroug. It was hoperd that by taking special care with the trig. resection. it would have been possible to prove the accuracy of the plane-table resections for future years, but this has not been fully achipred. In the four cases where the former is really reliable, the discrepancy has been trivial in three cases, and $3^{\prime \prime} \cdot 3$ in the fourth (Jusri). In this last case, the plane-table resection was based on an old map, which is not a fair test. Unfortunately two of the
farourable cases are also based on old maps, and so must perhaps be attributed to chance. There is only one case in which a good trig. resection is associated with a new map, and the error is there $0 " 3$, which is good. But there is no case, except Jusri and perhaps Dramthal, where the trig. resection is not liable to as much error as the discrepancy between the two methods, and some confidence is felt in the probability of good geoidal sections being ohtained from plane-table resections only.
5. Narrative of season's work.-The detachment, consisting of Mr. R. B. Mathur, oue recorder and ten khalāsis, left Dehra Din on 27th Oct., and started work at the Banihāl Pass on 2nd Nov,, whence they worked continuously from north to south completing work at Bupki H.S. on 9th March, and reaching Dehra on 11th March. Inconvenience, and a certain amount of delay, was caused by clouds, but it was very seldom that the full programme could not be completed in three nights. On these occasions a reduced programme was accepted. Snow and cold caused much discomfort in the Banihăl Pass, and water was poor and scanty in the part of the work which lay in Rājputāna. Various forms of transport were employed: motor lorries, mules and coolies on the Banihāl road: country carts in the Punjab and Ajmer : and permanent camel transport in Rājputana and parts of the Punjab.

The normal routine was to march in the early morning, reaching the next station soon after midday. The instrument was then set up and the geodetic fixing carried out, when necessary, including the Polaris azimuth at dusk. Observations were made that night. which were computed the next day, when the programme for the next station was also prepared. The second night's observation followed, and camp was broken on the morning of the third day. With inexhaustible persomel, perfect weather and no transport difficulties, it would be possible to observe 15 stations a month on this system. Actually Mr. Mathur observed 12 stations in January and maintained an average of 10 stations a month.

The total cost of the detachment (excluding provision for instruments and administrative supervision) was Rs. 9,000 during the field season, to which may be added about Rs. 2,000 for computation in recess, a total cost of Rs. 250 per station, a result which is rely creditalle to Mr. Mathur.
6. Computations.-At each station one night's work was cumputed in the field to make sure that all was well before leaving the station. Where trig. resections were required, they also were computed in the field. In recess the astronomical computations were completed, the lield computations were checked, and the Hayforl anomalies were computed.

The preparation of the star programmes at so many fiell stations entailed yuite a considerable amount of labour, which was
lessened by a simple device which Mr. Mathur improvised. All suit. able stars of the Greenwich catalogue are plotted by R.A. and declination on a long strip of squared transparent cloth ($1 \mathrm{~cm} .=1$ of δ or $10^{1 \mathrm{mI}}$ of R.A.). In order to prepare the programme at ans station, the chart is folded along the declination line correspondiny to stars which pass through the zenith at the latitude concernel. The chart is then held up to the light, and pairs with suitably simila zenith distances and R. A's. can be immediately selected. This de. vice was particularly useful when clouds caused interruption in the programme previously prepared : changes in the programme could be made at a moment's notice.

A statement of results, in the form of an addendum to the Supplement to Geodetic Report Vol. VI (list of all Indian deflection stations) is given in Table 4 (pages 68 to 73), at the end of this chapter.
7. The geoidal section.-Table 2 (pages 58 to 59) shom: the values of the deflection found at this season's stations, and at older stations along the same line. The table also shows the deflections referred to the International Spheroid *.

In Plate VI, these deflections are integrated up to form a see tion of the geoid. The line of section is the meridian $75^{\circ} \mathrm{E}$. from latitude 26° to latitude $34^{\circ} 35^{\prime \prime}$ (near Churawan. See Geodetir Report Vol. III. Plate VIII), whence the section line turns northeast to Skārdu. In the flat country south of latitude 33°, station: which do not lie exactly on the section line have been assumed to lie on it at their true latitudes, but in the hills stations off the line have been projected on to it in a direction parallel to the general trend of the Himalayas. In the small part of the section north of latitude $34^{\circ} 35^{\prime}$. where it does not run north and south, the total deflection has been assumed to lie at right angles to the hills, and the observed meridional deflections have consequently been (rather doubtifully) multiplied by $1 \cdot 3$ to give their components along the seetinn.

The Hayford anomalies have similarly been integrated upt gire the section of the compensated geoid, see Plate VI. The plate alsi shows the section of the Survey of India No. II spheroid t. placed in position relative to the International spheroid, so that the rulations of the geoin and compensated geoid to this spheroid ar alsn shwn. For further comparison the plate includes a sectime showing the arurage height of the country, and a curve of $9-\gamma_{c}$, the Hayforl eravity anomaly. This curve is produced from the contons: srivell on Chart XII, except north of the Srinagar Valley, where the raluey given are thise at stations on the section line. Reference ti ('hart XII shows that outside Kashmir the gravity data are rather scanty. and this curve noly shows the variation of gravity ins seneralised manner.

[^12]$\mathrm{Cm} / \mathrm{Sec}^{2}$
$+.080$
$+.060$
$+040$
$+.020$
000
$-.020$
$-.040$
-. 060
$-.080$

Feet
15,000
10,000
5,000
0

Latitude 25°

The datum heights of the geoidal sections above the International spheroid at the south end have been so chosen as to make the southerly 200 or 300 miles agree as closely as possible with the geoidal contours published in Geodetic Report Vol. V, Charts X and XII.

The form of the compensated geoid calls for comment in some respects. It is noticeable that the fall between lats. 26° and 31° agrees closely with that shown in Geodetic Report Vol. V, Chart XII (32 feet compared with 33^{*}). It had been expected that the previous paucity of observations in the Punjab might have led to some inaccuracy there, since the steady fall to the north appeared rather incompatible with the predominantly positive gravity anomalies obtained over most of the northern part of the area, but it appears that this is not the case.

As was anticipated in Geodetic Report Vol. III, page 81, the compensated geoid in Kashmir lies in considerably closer agreement with the Survey of India No. II spheroid than it does with the International spheroid. That this should be the case inside India was to be expected, since the Survey of India No. II spheroid was obtained by solving for the spheroid which would best fit the compensated geoid in India, but it was not necessarily to be expected that future extensions of the geoid would point the same way. The superiority of the fit loetween the compensated geoid and the Surver of India No. II spheroid is especially noticeable when the relationship between the gravity anomalies and the geoidal undulations are considered. It is not to be axpected that $g-\gamma_{c}$ should be directly proportional to the height of the compensated geoid above the spheroid, now ewen that all stations of positive gravity anomaly should lie on elerated parts of the geoid, but where several gravity stations indicate a dotinite area of exerss or dofect, the compensated geoid may be expeeted to show some corresponding undulation. If the International spheroid is accepted as a standard, the compensated pooid shows very little correspondence with the variation of gravity. With the exeeption of a narrow area of ilefect near Pathimkent and a mobahle dofect north of Skardu, gravity is continuously in excess (averaming about $+0 \cdot 020$) throughout the line of the section, whereas the eompronsated geoid falls continuously from worth to sonth reaching a depression of 25 foet in the heavily positive arca of Deosa, and then falling even more steeply to the end of the section. When on the othor hand the Survey of India No. II spheroid is taken as a standard, gravity and the geoidal section show a reasomably close relationship. The consistently positive gravity anomalies in the south are associated with a high geoid, the Pathankot deficiency with a small depression, and the excess gravity in Kashmir is reflected in a corresponding rise. The steep fall of the geoirl from Densai to Skardu is not in obvious accord with the positive anomalies found there, but it is in accordance with an intense negative area to the north, whose existence is also indicated by De Filippi's station at

[^13]Depsang. This Depsang station is 100 miles SE. of the line of the present section, but it has been shown on the gravity anomaly chart at the point where the section cuts the range on which it stand There is no doubt that, as measured by Hayford's standard, there is a heavy defect of gravity under some parts of the Kara-koram.

If the Survey of India No. II spheroid is accepted as a standard, the good fit of the compensated geoid, compared with that of the natural geoid, shows that in Kashmir Hayford's hypothesis has been many times more successful than the free air hypothesis in smoothing out geoidal anomalies, although both are equally unsuccessful in removing the widespread rise of the "Hidden Range" in latitudes 26° and 27°. It seems evident that this "Hidden Range" is definitely an anomaly which no generally applicable system can hope to eliminate.

If all the anomalies of density in the earth were confined to a thin superticial layer, it would be possible to locate and measure them by means of gravity observations only. The anomalifs having been measured, the geoidal undulations arising from them could be calculated, and if these undulations were subtracted from the observed form of the natural geoid, a perfect spheroid should result For this to be possible, the superficial layer containing the anomalies must be thin compared with the wave-lengths (crest to crest) of the highest order harmonics necessary for a reasonably accurate representation of the anomalies. This condition is not fulfilled with ans accuracy, but the depth (70 miles or less) within which anomalips probably occur is fairly small compared with the size of the major variations of anomaly in India, and a geoidal form calculated from gravity observations should bear hroad resemblance to the truth. This process has not been carried out*, but the relation between gravity and the geoid in Kashmir and the Punjal, is such as to makr it fairly evident that in Iudia the resulting spheroid would resemble the Survey of India No. II spheroid rather than the International spheroid: while in other parts of the world (e.g. the U.S.) the International spheroid might be more likely to result. If different countries give results which are definitely contradictory, it can only be concluded that there do exist widesprad anomalies of density at some considerably greater depth than 70 miles. This semms an unlikely hypothesis, and it is not to be accepted without much stronger evidence than is at present available.
8. Deflection observations in Burma.-During 1930-31 No. 15 Party (Triangulation) observed five latitude and azimuth stations near Kengtung (see Chapter VI, para 5), the results of which are conveniently reported in this Chapter', being included in 'rable t, pages 72 to 73 . The deflections in meridian call for no comment. but those in the prime vertical are liable to serious error on account of doubt in the accuracy of the geodetic azimuth. The nearest Laplace stations are at Chittagong and Akyab, where the accumu-

[^14]lated azimuth error of the triangulation is $+7^{\prime \prime}$, and these deflections have been computed on the assumption that no further error has accumulated between Akyab and Kengtung. It is, however, prohable that the error in geodetic azimuth at Kengtung is more like $+10^{\prime \prime}$, in which case the easterly deflections require to be decreased by about $7^{\prime \prime}$, and until the Kengtung Laplace station is observed, these prime vertical deflections must be considered provisional.

TABLE 2.-Deviation of the vertical in meridian

Statiou		Height	Lutitude	Longitude	$\begin{gathered} \mathbf{A}-\mathbf{G} \\ \text { Everest } \\ \text { Spheroid } \end{gathered}$	$\underset{A}{A-G}$ Interna Spheroid	$\left.\begin{array}{\|c\|} \hline \text { Hagioni } \\ \text { anomes } \\ \text { Intrase } \\ \text { tional } \\ \text { Spheris: } \end{array} \right\rvert\,$
		feet		- ,	"	"	*
Poshkar H. S.	\ldots	8323	3402	7430	+13.8	+ $20 \cdot 7$	+14:
Gogipatri H.S.	...	7752	3352	7441	+ 3.0	+ $9 \cdot 9$	+ 5.7
Banihāl Pass ...		9200	30	7513	-11.6	- $5 \cdot 1$	-3:3
Nachilani	...	5000	2	11	$-31 \cdot 3$	-24.9	- 3.4
Ràmban	...	2400	14	15	-33.2	-26.8	-所
Chineni		4000	03	17	$-34 \cdot 8$	-28.5	- ill
Dranthal	...	3800	3301	15	$-34 \cdot 1$	-27.9	- 6.8
Udhampur		2500	3256	08	-35.4	-29.2	- 9.1
Suruin Sar	\cdots	2100	46	03	$-24 \cdot 9$	-18.8	- i_{1}
${ }^{\text {Criwhȧgarh H.s. }}$	\ldots	2031	38	02	-18.4	-12.4	-1:
Bhinru-Chak T.S.	...	1053	27	07	$-13 \cdot 5$	-7.6	0.4
Atalgarh 'J's.	...	9.43	19	Of	$-7 \cdot 2$	-1.3	+ 4
Mailu-Sailu T. S.	...	Y ¢ั¢	11	04	--3.1	+ $2 \cdot 7$	+ 7
Shâhpur T. S.	...	805	3202	06	+ 0.\%	+ 6.6	+10.9
Siri 'I'S.	...	8.46	3153	05	$+1 \cdot 5$	+ $7 \cdot 2$	+10:20
Chowinda T. S.		4.3:3	43	03	+ $2 \cdot 8$	+ 8.5	$+100^{\circ}$
Dhiri-kot T. S.	..	789	35	03	+ $3 \cdot 0$	+8.6	+10.0 +4.
Kalla T. S.		74.	26	02	+ $2 \cdot 0$	+ $7 \cdot 5$	$+9.1$
Singatpur 'T.S.	\ldots	719	18	02	+ 1.0	+6.7 +0.7	+8.0 $+\quad .0$
Makhu Puràna	\ldots	648	3107	00	$-2 \cdot 8$	+8.7 $+\quad 3.9$ $+\quad 3$	+4. $+3 \%$
Dalūwata T'S.	\ldots	728	$30-39$	$0: 3$	$-1 \cdot 5$	+ 3.9	+ 3
Daranli T'S.	7.99	49	03	-0.6	+ 4.7	
Kunandwaila 'T'. S.	...	74.	40	02		+ 3.8	
Lakarwala 'I'. S.	..	7.36	:31	02	+ $1 \cdot 3$	+ 6.5	+ 7.1
Khimuinat T. S.	\ldots	731	22	01	-3.1	+ $2 \cdot 2$	
Maihmas. ${ }^{\text {M }}$...	730	1:3	00	-1.7	+ $3 \cdot 4$	+
Kalia-Vandar 'T's.	\cdots	72	30) 0.4	75 00	-3.0	+ $2 \cdot 0$	+
		717	?! 86	$7 \cdot 54$	- 1.2	+ 3.8	
Tiloka T.S.	\ldots	710	+4,	7802	-1.8	+ 331	
Swapur T.s.		169	391	03	- 0.8	+ $4 \cdot 1$	+ +
Sirsa, s.		738	32	7501	- $1 \cdot 4$	+ $3 \cdot 4$	+ 3.
Pankast.		710	2983	948	-1.6	+ $3 \cdot 2$	+ 3.1
Kämgarh S .	\cdots	69.4	2913	1+89	- 0.8	+3.9 +3	$+10$
Siais.	...	760	2901		- $0 \cdot 1$	$+4 \cdot 3$	+ +
Rangarris. ${ }_{\text {Max }}$	\ldots	775	28.33	7489	+0.6	+ $\quad 31$	+ +3. +3
Wakar Thal 8.	...	830	41	7502	-0.6	+ 3.9	13 ?
Rām Thals		951	30	00	-0.5	+ 4.0	+3.3 +3.
Ranrlitia S.	...	1038	18	02	-0.6	+ 3.8	+ $2 \cdot 1$
riogla-Bhar 8.		1112	2807	01	-1.2	+311	+ 2.1
Garinda H.S.	\ldots	1204	27 in	7501	- 0.5	+ 3.8	$\begin{array}{r}\text { + } 29 \\ +\quad 1 . \\ \hline\end{array}$
Bhimba S. ${ }^{\text {Maira Dâs S. ... }}$ M	\ldots	1261	$\begin{array}{r}17 \\ \hline 17\end{array}$	7456	-4.5	$-0 \cdot 2$	-1. $+\quad 0$
Maía Dás S. ...	\ldots	$1: 317$	27 3 ${ }^{2}$	74.54	- 1.5	+ 2.7	$+$

Note: Minns sign denotes N. on E. deflection of the plumb-line

TABLE 2.-Deviation of the vertical in meridian.-(concld.)

[^15]
Section II

The traverse across the Great Indian Desert

by Major E. A. Glennie, d.s.o., r.e.

9. Programme.-As a part of the gravity and gradiometer programine of No. 14 Party the desert was crossed roughly about Lat. 28° N. from Reti NE. of Sukkur to Kolait SW. of Bikaner, a total distance of 212 miles. The opportunity was taken to maku observations for deflection in the meridian and prime vertical al nine stations on the line of this traverse; the geodetic positions of these deflection stations were obtained by means of a special theodolite traverse.
10. Personnel and transport.-A small camp consistin! of the head clerk and 7 khalāsis was left at Reti. The remainder of the party left Reti on 3rd November, 1930, and spent two monthr on the journey across the desert.

Excluding the camp at Reti, the party was organized for thr march as follows :--
I. Traverse section.
(a) Theodolite squad.

Observer	...	Major Glemie.	
Recorder	..	Computer K. M. Laskar.	
Khalasis	\ldots	\ldots	\ldots

(b) Hunter Short Base squad.
Computer Mukhtar Ahmed (in charge)
Khalasis a
II. Gradimeter saction.

Observer	\ldots	Mr. L. D. Joshi, U. S.s.s.		
Khalāsis	\ldots	\ldots	\ldots	12

IIT. H-adquarters.
Khalāsis... I
Private servants \geq
Camel men ... $\quad 27$
Load camels il
Riding camels \quad ?
11. Equipment.-Besides tents, pendulum, astrolabe, gradiometer and traverse equipment, eighteen camel tanks of 13 gallon capacity and rations were carried.

Rations for the khalāsis comprised :--

Rice	\ldots	\ldots	30	maundls
Ata	\ldots	\ldots	30	$"$,
Dāl	\ldots	\ldots	8	$"$
Potatoes	\ldots	\ldots	\ddagger	$"$
Onions	\ldots	\ldots	\vdots	$"$
Salt	\ldots	\ldots	$\underline{ }$,

The dal remained over at the end of the trip as the well-water was found to be unsuitable for cooking it. Dal should not be taken into the desert, unless it is anticipated that rain water will be available. The camel men carried their own supplies and hard to replenish en route by sending to Kishangarh and Vijnot. The stock of food-stuff available for sale at these places is meagre and very expensive. Poultry, goats and sheep could be obtained from the nomads in the desert, but no other supplies.
12. Nature of the country.-The first uine miles E. by S. of Reti was through flat irrigated country. Longwāli H. S. (Lat. $28^{\circ} 00^{\prime}$, Lomg. $70^{\circ} 00^{\prime}$), the site of the first camp, was on the fringe of the real desert.

From here on, the route kept a mile or two north of Lat. $\mathbf{2} 8^{\circ}$ as far as Long. $70^{\circ}: 38^{\prime}$ and then gradually sagered to 8 miles south of Lat. 28° finally swinging NE. at Long. $72^{\circ} 13^{\prime}$ so as to close on Uperthal H.S. 'The route was straight across country as no tracks leed to the east.

The desert regrion falls into three main types:-
(i) From Longwäli to Kandera Fort (Lat. $28^{\circ} 01$, Long. $70^{\circ} 12^{\prime}$; are high sand domes in parallel lines $1 \xrightarrow[2]{ }$ miles apart, with a W. by S. strike, and the steep face of the dune on the morth side (as was the case all through the (lezert). In botween the dumes were Hat areas of "pat". It would be possible for ordinary motor cars to reach Kandera Fort without much difficulty but they could not go eastwards beyond this.
(ii) The next section extents to about f.) miles cast of Kandera. Here the maximum dune development is foond and water is excerdingly searee. The dunes stant on the west with a W. by S. strike and gradually veer round through west to W. ly N .

Proceeding east from Kandera transverse vidges begrin to form on the dunes. becoming more and more prominent. As the main ridges move northwards these transverse ridges tail out behind in
long spurs and are over-ridden by the next dune, so that the valles: between the main dunes are crossed by sand ridges and the hard " pat" areas grow smaller, vanishing altogether at the east edge.

The sand is coarse and firm, thorus are absent and the dune: are thickly dotted with bushes four or five feet high, so that there is no glare and marching is pleasant. Camel food is plentiful bul there are some poisonous plants unknown to the Sind camek Three of these died in consequence.

Measurements in the centre of this area showed a genenil northerly movement of the dunes amounting to about $1 \underset{\downarrow}{d}$ furlonem since the survey in 1873, that is an annual movement of abou 15 feet.

The highest dune in this area was about 200 feet high abori the "pat"; the steep north face of the dune was about 150 feet higin
(iii) On the east edge of the main dune area, the dunes crowl in until they are $\frac{3}{t}$ mile or less apart. This appears to be the resul of stagnation, and the next type of desert begins abruptly. Thi is a low lying area of soft sand, thickly covered with hummode of spiny grass, very wearisome to march through. There are hi sand ridges about 30 feet above the general level which appear he the last relies of the transverse ridges of the main dune area.

After some 50 miles of this, cultivated areas appear, graduall: increasing in size and frequency. Uperthal H. S. (Lat. $28^{\circ} \mathrm{olit}$ Long. 72 2° 15) and Mankasar H. S. (Lat. $28^{\circ} 00^{\prime}$, Long. 72° 29 mark a small belt of high, widely separated sand dunes. Bigit miles beyond Mankasar a hard kitukire plain is reached and the sandy desert has been left behind.
13. Water. --The rains had failed in the summer and all the "tolas" were dry. The 18 camel tanks taken with the party wer really insufticient and watur supply was decidedly precarious at timm Water was obtainon from wells and usually had to be drawn in the parly hours of the moming since in the day time the water mid "xhansted in supplying water for cattle. The wells were ussall! pight or munit milos from the camp, and at one place water had lee futchenf firm a distance of nineteen miles.

Water was of two kiouls-_brackish (khäri) and bad (karven The former contained eommon salt and was much relished in coll parsion with karna water which perhaps contained magnesium anli and from one place was almost porisonous, causing boils, tooth-ad ear-acha, and stomach-ache.

On the east "rlge of the ilesert the villagers store rain-waterif covered pits lined with kitmkert lime mortar. This stored wald is very sweet and clean. East of Long. $71^{\circ} 30^{\prime}$ wells were nefic more than two or three miles from the route and usually one ont taining brackish water could be selected.

Stored rain-water was obtainable at times.
14. Inhabitants.-In the 1 st and 2nd sections of the route there are only nomad shelters of the most temporary character. There are plenty of cattle, large flocks of sheep and nomad encampments with poultry in the sand dune area. Except for the cattle they seem to be almost independent of water in the cold weather. The cattle go daily unattended eight or more miles to the wells where men are on duty to water them. The inhabitants were very friendly, but the fact that a local guide was engaged at Kandera almost certainly prevented trouble at the wells.

Wolves are common in the central part of the desert, and gazelle and great bustard are common everywhere. There were some partridge, but sand grouse were noticeably absent.
15. Temperature.--The maximum day temperature varied between $70^{\circ} \mathrm{F}$. and $80^{\circ} \mathrm{F}$. at uight it usually dropped to about $35^{\circ} \mathrm{F}$. and on many occasions there was hard frost. There was very little wind, and visibility was excellent throughout, with no dust haze and remarkably little radiation.
16. The traverse.-Startinğ at Lougwāli H. S. with a ray to Vijnot T.S., a traverse was run across the desert closing at Uperthal H.S.

A small Wild theodolite was emplored aud a Hunter Short Base served as a subtense (4 chains long). A short account of the Hunter Short Base (see Platr VIII of this volume for the new model) appoars in Geodetic Report Vol. IV and Departmental Paper No. 10, 19:31. Subtense angles were taken on $1: 2$ zeros at 15° intervals, 6 zeros on cach face. Traverse angles were taken on 6 zeros, 3 on each face. Vertical angles were taken in the forward direction only.

Results of the traverse are summarized below.
Tranowe Results

Length of traverse	147\%	miles
Average subtense clistance	1.76	"
Average subtense angle	$1^{\circ}+3{ }^{\prime}$	
Max subtense rlistance	3.4	miles
Number of base stations	12	
Total number of stations	85	
Closing error in latitude	$1^{\prime \prime} \cdot 47$	
Closing error in longitude	$1^{\prime \prime} \cdot 42$	
Accuracy	1 in 6125	
Average probable mon of subtense olservation	$\pm 9^{\prime \prime} \cdot 76$	

Traverse results-(contd.)
Average probable error of mean
subtense observation $\quad . . \pm 0^{\prime \prime} \cdot 79$
Traverse height of Uperthal H.S. $623 \pm 6 \mathrm{ft}$. above M.S.L G.T. height of Uperthal H.S. ... 622 ft . above M.S.L.

The closing errors were distributed uniformly along the line of traverse. The uncertainty of 6 feet in the height is due to an unfortunate error in reading (or recording) the vertical angles at one station. The reading on the two faces are incompatible, one showing elevation and the other depression. It is fair to assume that one of these readings is correct, but it is not now possible to decide which is the correct one.

The traverse heights along the route show that the ground level of the "pat" rises at a fairly steady rate of about $1 \frac{1}{2}$ feet per mile between Longwāli and Uperthal.

$$
\begin{array}{lll}
\text { " Pat" level at Longwāli } & \ldots & 24.3 \mathrm{ft} \text {. above M.S.L. } \\
\text { " Pat" level at Uperthal } & \ldots & 460 \mathrm{ft} \text {. above M.S.L. }
\end{array}
$$

The subtense angles on 12 zeros have been examined to see if there is any indication of systematic errors in the dividing of the horizontal circle of the Small Wild Theodolite (No. 1702). No systematic error can be detected.
17. Method of traverse. -The Hunter Short Base was set up at altermate stations as nearly as possible at right angles to the traverse line. (At times owing to terrain difficulties the base angle was only slightly over $1 \underline{2}^{\prime}$). A special target was plumber over each end, (see Plate VII), and similar targets were set up to mark the theodolite stations from which subtense angles were takell in both forward and hackward directions to fach base. Travers' angles were taken at loth theodolite and base stations, and in adrlition at base stations the base angle was measured at one end of the base.

The special targets were excellent up to $3 \frac{1}{2}$ miles so long at the sun was slightly oblique to them, either in fiont or behind, but if it was in the same plane (i.e. at about midday) the targets tended to vanish completely for about $\frac{3}{f}$ hour. Only four targets were carried in the lield, which were insufficient and led to long delays while targets wore being carried forward. A fifth target was extemporised out of a camera tripod but was not very satisfactory. The traverse party should have had six or seven targets and three or four more khalasis. On account of this shortage, three legs of the traverse was a good day's out-turn and was never exceeded, hence in order to traverse 7 or 8 miles a day the subtense distances had to be made very much longer than had originally been intended and

Special Target in use with Hunter Short Base.

Scene in the Great Indian Desert.

Hunter Short Base (New Model). Showing Post A and one INTERMEDIATE SUPPORT.

Hunter Short Base (New Model). Showing Post B.
the accuracy of the traverse suffered in consequence. With shorter subtense distances and a stricter alignment of the base it seems certain that really precise results could be obtained, and this method is probably the best way of traversing a desert of this nature.

The responsible task of selecting sites for all stations, setting up the base and centring the targets was carried out by B. Mukhtar Ahmed.

The base line was standardized at Dehra Dūn at the beginning and end of the field season aud was found to have increased 0.006 feet during the field season. The mean value of the length of the base at the beginning and end of the field season was used throughout the traverse.
18. Deflections.-Deflections were obtained by astronomical observations with the large prismatic astrolabe, Claude and Driencourt pattern (Geodetic model) by S. O. M., vide Plate IV, Geodetic Report, Vol. III.

Auxiliary apparatus employed were the Marconi R. P. 11 Wireless receiver and one of the two break-circuit chronometers by Thomas Mercer used for pendulum observations, a drum chronograph by Thomas Mercer, and the personal equation apparatus designed by Capt. Bomford, r.E., which is described in Geodetic Report Vol. 1II, Chap. VIII. A very short programme of observations was employed of three or four hours only, comprising as a rule six groups of stars, one in each quadrant. The wireless time signal transmitted by Rugby at eighteen hours G.M.T. was used, except at Aqilwāla when the Nauen signal at noon G.M.T. was employed.
19. Results.-The deflections obtained are shown in Table 4: the personal equation and probable errors are shown in Table 3.

TABLE 3-Astronomical Stations

No.	Place	Personal equation	$\left\|\begin{array}{ll} 0 \\ 0 & 0 \\ a & 0 \\ 0 & 0 \\ 0 & 0 \\ \square & 0 \end{array}\right\|$	Probable error of Astronomical Determination.	
				Meridian	Prime Vertical
601	Iongwâli	s -0.04	6	+0.54	± 0.35
602	Kandera	-0.04 +0.02	6	\pm	$\pm 0 \cdot 16$
603	Dinga	-0.01	6	± 0.08	$\pm 0 \cdot 32$
604	Aorhelawāla	+0.01	6	± 0.42	$\pm 0 \cdot 60$
605	Barsiwila ...	-0.01	6	± 0.56	$\pm 0 \cdot 24$
606	Matwīri	**	5	$\pm 0 \cdot 30$	$\pm 0 \cdot 24$
607	Arfilwāla	+ 0.04	6	± 0.29	± 0.24
608	Charanwōla	-0.02	6	± 0.34	± 0.29
609	Uperthal \quad...	-0.02 +0.04	4	$\pm 0 \cdot 43$	$\pm 0 \cdot 24$
	Mean	$0 \cdot 00$	\ldots	± 0.35	$\pm 0 \cdot 30$

*At Matwari the personal equation apparatus was out of action owing to a temporary failure in the electrical circuit.

It is evident that the deflections may be considered correct fi: within two seconds of arc. This accuracy is sufficient, since thu geoid is better obtained from data of moderate accuracy at closel spaced stations than from precise data sparsely distributed.
20. Deductions.-Sections and contours of the geoid are shown on Charts IX and X. Gravity anomalies are also shom. The uniform southerly deflections may be due to (i) excess mas: to the south (ii) deficient mass to the north, (iii) a combination of the two. The latter is the more probable.

The marked uniformity of the southerly deflections indicate: a great uniformity of the disturbing feature with a probability that it is fairly distant and deep-seated.

It is likely that the southerly deflections are almost entirel? due to the Hidden Range, and that associated with the low grarity anomalies at Dera Ghāzi Khān there is a bay in the range pushing its crest south of the assumed crest line on Chart VI of Geodetic Report Vol VI. If the crest of the Hidden Range remains in the position assumed in Geodetic Report Vol. VI the southerly deffer tion due to it is rather less than 2 seconds of arc. A slight shifl of the crest south is insufficient fully to account for the southerly deflections, and it is therefore likely that we have here in addition a rise in the Hidden Range associated with a deepening of the trough near Dera G Ghāzi Khān. Rocky outcrops near Jaisalmer are citel in confirmation of this assumption.

The high gravity value at Matwāri without a corresponding rise in the geoid probably indicates a narrow ridge of rock of normal density rising fairly close to the surface of the alluvium. This would be a promising place for a boring to prove the bed-rock.

Horizontal Scale 1 Inch=32 Miles
Deflection Scale 1 Inch $=20$ Seconds
Fig. I
Section on Lat $28^{\circ} \mathrm{N}$.

Fig. II
Geoid Contours (International Spheroid)

Fig. III

DEFLECTION STATIONS

First Addendum to Table 1 of "Supplement" to G. R. Vol. VI.

TABLE 4

$\begin{aligned} & \dot{\circ} \\ & \text { 云 } \\ & \text { 岂 } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \stackrel{y}{4} \\ & \stackrel{\rightharpoonup}{\mathbf{0}} \\ & \stackrel{0}{\infty} \end{aligned}$	Observed at	$\begin{gathered} \text { Height } \\ \text { in } \\ \text { feet } \end{gathered}$	International Spheroid Deflections		Calculated Deflections. Hayford System		$\begin{array}{\|c\|} \hline \text { Calculnted Deflec } \\ \text { tions. } \\ \text { Uncompensated } \\ \text { Topography to } \\ 2564 \text { miles } \end{array}$	
				Meridian	P.V.	Meridian	P. V.	Meridian	P. V.
566	39 L	Longwāli ...	243	$\prime \prime$ $+\quad 5 \cdot 6$	$\prime \prime$ $+6 \cdot 6$	- ${ }^{\prime \prime}$	+ 0.2	- $\begin{gathered}\prime \prime \\ -34+\end{gathered}$	- 8
$\overline{567}$	L	Dinga ...	395	+ 7.0	$\overline{+8 \cdot 4}$	-0.2	-0.0	$-32 \dagger$	-10t
568	L	Kandera	305	$+6.8$	$+6 \cdot 5$	-0.3	$0 \cdot 0$	$-33 \dagger$	$-9+1$
$\overline{569}$	$\overline{40 \quad \mathrm{I}}$	Barsiwãla	342	+10.6	$+1 \cdot 0$	+0.1	-0.1	$-31 \dagger$	-124
570	I	Gorhelawàla	319	+9.3	$+4 \cdot 0$	$0 \cdot 0$	-0.1	$-31 \dagger$	-11t
571	$\overline{40 \mathrm{M}}$	Matwã'i	356	$+10 \cdot 3$	-3.6	+0.1	-0.2	-31+	-184
572	\mathbf{M}	Aqilwāla $\quad .$.	414	+ $9 \cdot 3$	$-3 \cdot 2$	$+0 \cdot 2$	-0.3	$-30 \dagger$	-15t
573	M	Charanwāla ...	443	+10.8	$\overline{-0.4}$	+0.2	-0.3	-29+	-15
$\overline{574}$	430	Banihāl Pass	9200	$-5 \cdot 1$		-1.8		$-38 *$	
575	\bigcirc	Nachilani	5000	-24.9		$\overline{-19 \cdot 5}$		-57^{*}	
576	0	Rámban	2400	$\overline{-26 \cdot 8}$		-20.7		-62^{*}	
$\overline{\mathbf{5 7 7}}$	0	Chineni	4000	-28.5		-21.4		-60^{*}	
$\overline{578}$	0	Dramthal	3800	$\overline{-27 \cdot 9}$		-21.6		-62^{*}	
$\overline{679}$	\mathbf{P}	Udhampur	2500	$\overline{-29 \cdot 2}$		$-20 \cdot 1$		-60*	
580	P	Suruin Sar	2100	-18.8		$\overline{-11 \cdot 7}$		-49*	
581	\mathbf{P}	Gurhāgarh H.s	2031	$-12 \cdot 4$		$\overline{-10.9}$		-49*	
$\overline{582}$	P	Rhinv Chim I.S.	1053	$-7 \cdot 6$		-7.6		-42^{*}	
583	${ }^{\prime}$	Atalgarh T.S.	943	-1.3		$\overline{-6.0}$		-39^{*}	
584	P	Mailu-Sailu T'S.	856	$+2 \cdot 7$		- $5 \cdot 0$		-39^{*}	
58.5	4+ J	Maihna S.	730	$\underline{+3 \cdot 4}$		-0.7		-10^{*}	
586	K	Gir-wili I'S	717	$+3 \cdot 8$		- 0.6		-15*	
687	K	Bānka S.	710	$\overline{+} \overline{3 \cdot 2}$		-0.2		-10^{*}	
388	K	Rimgarh S.	694	$+3 \cdot 9$		$-0 \cdot 1$		-10^{4}	
\%89	L	Rangarri 'T.S.	777	$\mp 5 \cdot 1$		$\overline{+0 \cdot 6}$		- $7^{-\frac{1}{}}$	
590	M	Siri T. S	846	$\overline{+7 \cdot 2}$		-3.0		-33"	

* Topography to 400 miles.
\dagger Topography to 417 miles.

DEFLECTIONS 1930-31

TABLE 4

	$\begin{aligned} & \dot{\Delta} \\ & \stackrel{\rightharpoonup}{z} \\ & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\rightharpoonup}{\otimes} \end{aligned}$	Observed at	$\left\lvert\, \begin{gathered} \text { Height } \\ \text { in } \\ \text { feet } \end{gathered}\right.$	International Spheroid Deflections		Calculated Deflec tions, Hayford System		Calcuted Deflec. tions. Uncompensated Topagraphy to 2564 miles	
				Meridian	P.V.	Meridian	P.V.	Meridian	P.V.
591	44 M	Chowinda T.S.	833	+ $8 \cdot{ }^{\prime \prime} 5$	"	- $2 \cdot 2$	"	- ${ }^{\prime \prime} 9^{*}$	"
592	M	Dhiri-kot T.S.	789	$+8 \cdot 6$		$-2 \cdot 1$		-28^{*}	
593	M	Kalla 'I.S.	784	+ $7 \cdot 5$		- 1.9		$-27 *$	
594	M	Makhu Purāna	687	$+2 \cdot 5$		-1.5		-24*	
595	\mathbf{N}	Dalūwāla T.S.	728	+ $3 \cdot 9$		- 1.3		-23^{*}	
$\overline{596}$	N	Daraoli T.S.	759	+4.7		- 1.1		-21*	
$\overline{597}$	$\overline{\mathbf{N}}$	Kunandwāla T.s.	745	+ $5 \cdot 8$		- 1.0		-20*	
$\overline{598}$	N	Lakarwāla T.S.	736	+6.5		-0.9		-19*	
$\overline{599}$	N	Kaila-Vāndar 'I.S.	727	+ $2 \cdot 0$		-0.7		-15^{*}	
500	0	Tiloka T.S.	710	$+3 \cdot 1$		-0.5		-14*	
$\overline{601}$	0	Sirsa S.	738	$+3 \cdot 4$		-0.4		-12^{*}	
$\overline{602}$	0	$\overline{\text { Siai }}$ S.	760	+ 4.5		+0.3		- 8*	
$\overline{603}$	P	Mákar Thal S.	830	+ $3 \cdot 9$		+0.7		-6^{*}	
$\overline{604}$	P	Randãlia \quad S.	1038	$+3 \cdot 8$		+1.1		-4^{*}	
$\overline{605}$	$\stackrel{\text { P }}{ }$	Gügla-Bhar S.	1112	+ 3.1		+1.0		- ${ }^{*}$	
$\overline{606}$	45 A	Uperthal	460	+10.2	-3.7	$+0.3$	-0.5	$-29 \dagger$	-16 \dagger
$\overline{607}$	I	$\overline{\text { Bhümba }}$ S.	1261	-0.2		+1.0		-2^{*}	
608	I	Maira Dās S.	1317	$+2.7$		+0.7		-2^{*}	
$\overline{609}$	I	Pänchwa F.S.	2048	+ 4.9		+0.6		- 1*	
$\overline{610}$	I	Jusri Village	1300	$+7 \cdot 8$		+0.6		0*	
611	J	Kinsirra H S.	2423	$+8 \cdot 9$		+0.5		0*	
$\overline{512}$	J	Kharkari Village	1450	$+6 \cdot 1$		$+0 \cdot 3$		+ $\mathbf{1}^{*}$	
613	J	Narwar Village	1500	$+5 \cdot 7$		-0.1		+ ${ }^{\text {¹ }}$	
614	J	Gūdha H.S.	24.18	$+2 \cdot 2$		+0.2		$+1^{*}$	
615	J	Asapura Village	1500	- $2 \cdot 0$		-0.7		0^{*}	

Topography to 417 miles.
\dagger Topography to 400 miles.

Chap, iv.]
DEVIATION OF THE VERTICAL
DEFLECTIONS 1930-31.-(Contd.)

Notn:-Minus sign denotes N. or E. deflection of the plumb-line.

TABLE 4

$\begin{aligned} & \dot{8} \\ & \dot{4} \\ & \text { 寻 } \\ & \stackrel{5}{0} \end{aligned}$		Observed at	$\left\|\begin{array}{c} \text { Height } \\ \text { in } \\ \text { feet } \end{array}\right\|$	International Spheroid Deflections		Calculated Deflec tions Hayford System		$\begin{gathered} \text { Calculated Deflec. } \\ \text { tions } \\ \text { Uncompenseted } \\ \text { Topography to } \\ 2564 \text { miles } \end{gathered}$	
				Meridian	P. V.	Meridian	P. V.	Meridian	P. V .
616	45 J	Shokli Village	1300	(${ }^{\prime \prime}$	"	$\prime \prime$ -0.7	"	" ${ }^{*}$	"
$\overline{\text { fi7 }}$	J	Bupki H.S.	1878	-1.9		-0.4		0*	
$\overline{618}$	M	Shami Village	1600	$\underline{+5 \cdot 2}$		+0.8		- 1*	
$\overline{619}$	$\overline{930}$	Kengtung North Base	2552	+ 1	-19	$-3 \cdot 6$	$+2 \cdot 8$		
620	0	Loi Hpalan H.S.	7613	+ 8	-1	-0.3	+7.6		
621	0	Kengtung Centre Base	2541	+ 3	-19	-1.7	+1.3		
+i22	0	Loi Makho H.S.	6216	+11	-22	$+3 \cdot 0$	$-7 \cdot 5$		
623	O	Kengtung South Base	2581	$+8$	-9	$+1.0$	+1.9		

*Topography to 417 miles.
\dagger Topography to 400 miles.

Chap. rv.] DEVIATION OF THE VERTICAL
DEFLECTIONS 1930-31.-(Concld.)

Nors:-Minus sign denotes N. or E. deflection of the plumb-linc.
*These Prime Vertical deflections are provisional only. Thoy probably require a correction of about $+7^{\prime \prime}$. See Chap. IV. para 8 .

TABLE 5.-Isostatic and Topographical Deflections

The following stations appear in Table 1 of the Supplement to Geodetic Report Vol. VI, without entries relative to deflections cal. culated on the Hayford and uncompensated topography systems. The reductions have now been carried out.

		Observed at	Calculated Deflections Hayford System		Calculated Deflections Uncompensated Topography to 417 miles	
			Meridian	P. V.	Meridian	P. V
					"	
76	4:3 J	Poshkir	$+6.4$		-25	
7	J	Zebanwan	$-17 \cdot 1$		- 50	
49	K	Gogipatri	$+4 \cdot 6$		-28	
90	K	Reban	$-3 \cdot 3$		-38	
97	43 P	Shinhpür	-3.7		- 35	
10.9	44.11	Sangatpen ...	-1.8		- 26	
129	4.5 M	Garinda	+ $0 \cdot 9$		$-\quad 2$	
5	- E^{2}	Depsing'I'ransit S.	- 26	- ๕.2	$+7^{*}$	- 13*

*Topography to 100 miles.

Chapter V

GRAVITY

hy Major E. A. Glennie, d.f.o., r.e.

(i) Field Season 1930-31

1. Programme.-Observations during the field season were planned to fill in a large blank in the north-west of Peninsular India. Work commenced with a line of seven stations spaced across the Great Indian Desert at about lat. $28^{\circ} \mathrm{N}$. from Longwāli 60 miles NE. of Sukkur to Kolait 25 miles SW. of Bikaner. Gravity work on this line was carried on pari passu with a theodolite traverse and astrolabe and gravimetrical observations. These are described in other parts of this report. (See pp. 61 to 67).

After leaving Kolait use was made of the numerous railway systems to cover rapidly the area centred about Long. 76° E. from Ambala in the morth to Ratlam in the south. Twelve gravity stations in all were establisherl in this area.

Observations were also made at Pachmarhi and at Piparia aud Narsinghpur in the Narbada valley.
2. Strength of the party.-The gravity party consisted of one officer, one clerk, two computers and thirty-four khalāsis. This establishment was bigger than usual owing to the extra work to be done during the desert traverse.

Health was excellent throughout the field season until the return to Dehra Dūn when two khalāsis became seriously ill with pneumonia.
3. Apparatus.-The 1926 pattern apparatus and the nickelsteol pendulums described in Geodetic Report Vol. IV were used throughout the season.

Two chronometers by Thos. Mercer (Nos. $12831 \& 13560$) were amployed. Owing to partial failure of the electrical contacts only one chronometer could be used at many stations. Both elocks developed very erratic rates during the field season, lut this was not serious, since the method now employed of swinging the pendulums nearly continuously between wireless time signals practically elimi nates clock rate errors.

A more serious matter was the partial failure of the wirelese receiver half-way through the desert. The source of the trouble wa trivial, and was due to a faulty resistance and a defective joint, but this was not discovered until the return of the party to recess. Re. ception was exceedingly poor, and frequently the usual method of using the chronometers to cut out the rhythmic signal had to be abandoned in favour of the less accurate method of listening to the signala, and watching the second-hand of the chronometer. When this method is employed there is usually an uncertainty of about 10 secouds in estimating the time of a coincidence. Error did not result, however, except at Ratlām. At this place the gravity result ran only be considered correct to $0.01 \mathrm{~cm} / \mathrm{sec}^{*}$.

The wireless receiver, Mareoni R. P. 11, has now been in use for five field seasons with thousands of miles of rough travelling each stason: so, in spite of its partial failure last field season, its performance can be considered highly satisfactory. The four valves aririmally installed in the receiver in 1926 are still in use.
4. Details of the observations.- Results are shown in Tables 1 to 4. Table 2 shows that, except at Ratlam, the two pairs of produlums crive results which are satisfactorily in agreement.

At Rewari there is an uncertainty in the height of the grarit! station, which may be in error by nearly ten feet. This is not serious, the resulting wrom in ! amounting to only $0.001 \mathrm{~cm} / \mathrm{sec}^{-}$.

(ii) Results of the field work

5. General description of the area.- The Great Inlian lesert in the part tramersed appears to be a flat plain of allurium rising from wret to wast at a steady slope of about $1 \frac{1}{2}$ fret per mile. Sind hills, in plares g.on feet or more above the general level, rise ahowe this plain, which consists of a sandy loam interspersed in mans pares with small had anlules of cemented sand. Patches of hard clav incur in plane and here the nomadic inhabitants dig shallow A.pussimu (there) to catch rain water.

Tho tirst six cravity stations from west to east were in the
 wape "F wok in the moighbourhoorl.

I an indebted to the Director of the Geological Survey of India for the following geological classification of the gravity stations:--

Geological situation of gravity stations.

Station Number	Name	Grology
I. Indo-Gangetic alluvium		
$20{ }^{2}$	Longwīli -	
207	Gorhelawila	
$20 \times$	Matwiri	No rock exposures.
209	Açilwîla	
210	Charanwila	
211	Uperthal	
213	Ratangarh	Igneous rhyolite and tuff 10 miles to SSW. and ESE. respectively.
214	Degãna ...	Granite (with wolfram bearing veins) 212 milns to SW.
224	Ringas ...	Granite 8 miles to NE.
225	Rewãri ...	Sedimentary quartzites and slates 1% miles and more away.
206 $20-1$	Hissiar Ambilit	Nor rock exposures.
IT. Aravalif and Delhi Systeme		
21.7	Ajmer	On sedimentary quartzites of Delhi system. Granito adjoining to $\mathbf{N W}$
216		On Decean trap and laterite over Arãvalli qedimentas.
293	Saxai Mindhopur	On sedimentary sandstone (quartzites) of Arivalli (Gwalior) system. Vindhyans 6 milos to SE.
III. Miscellaneous		
212	Kolait	On Eocene sediments.
217	Ratlȧm ...	On Deccan trap.
21.4	Shıjāulpur ...)	On Deccan trap.
290	Pnchmarhi	On Gondwinn sediments.
219	Piparia $\quad .$.	On Narhada alluvium.
291	Narsinghpur ...	On Narbada alluvium.
22	Kotah	On Vindhyan sediments.

All the stations except Ambala are on a raised part of the geoid.
6. Results.-It has been pointed out in the last two Geodetir Reports that the Hayford gravity anomaly does not show a satis. factory correlation with geological features. A large part of the anomaly is due to the deep-seated Hidden Range. After remoring the effect of the Hidden Range the remaining anomaly, $g-\gamma_{\mathrm{E}}$, shoms some correlation with topographical features, which can be remored by applying a negative correction proportional to the average height of the topography near the stations. Thiz indicates under compen. sation of the topography. Proceeding on these lines a new anomalr, $y-\gamma_{\mathrm{F}}$, has been derived. (See chart XIII). This anomaly takes the place of the $g-\gamma_{\mathrm{E}}$ a anomaly figured in Geodetic Report Vol. VI and only differs very slightly from it.

The method by which the anomalies have been derived and the conclusions from it are being discussed in detail in Professional Paper $\mathrm{N} \circ \mathbf{2}^{27}$. The main conclusions, only, will be briefly summarized here.

These are:-
(i) Topographical and abnormal crustal densities are not compensated.
(ii) After removing topographical effects without compenstion, the remaining anomalies are almost entirely due to deep. seated departures from normal density due to depressions and elevations of the denser layers of the crust.
(iii) Excluding certain major warpings of the crust, a depression is halanced ly an elevation near by, so that there is wo wile departure from hydrostatic equilibrium, but the depressions have a preponderating effect on gravity at the surfaee so that in continental areas the illusion of compensation of toposraphical elevations is obtainerl.
7. $g-\gamma_{\mathrm{F}}$, and geology.-The $g-\gamma_{\mathrm{F}}$ anomaly is assumed to bee in most cases a direct measure of the amount of elevation on drnerssion of the deeper layers of the crust under the gravity station within a ralius of about 2:; miles after removing the effect of the Hilta, R Range aurl its flanking troughs.

Chart XIII therefore shows how the crust underlying Penin. sular aull watra Peninsular India has been raised into "positive" arns (rol) or depressed into "negative" areas (blue).

Present day topography is not necessarily elevated over a $" 1$ "-itive ". area or vice versa, but usually past denulation of the "prsitiv" area has lairl hare the lower igu"ens rocks, muld sedimentary formations will be found over the "nogative" area : so that Chart XIII distinguishes fairly successfully between implenus and serdimentary areas.

Where, however, a recent positive movement of the crust has raised up with it serlimentary formations not yet completoly denuded away, the distinction between igneous and sedimentary rocks fails.

Some sedimentary formations overlying "positive" portions of the crust are:-
(a) Aravalli and Delhi systems.
(b) Siwāliks and Puränas of Outer Himalăyas.
(c) Punjab alluvium.
(d) Tertiary and recent sediments at Karächi, Sukkur \&c.

Similarly ancient igneous rocks may be associated with a more recent negative movement of the crust. This may he the case in the extreme south of India.

The Deccan trap has, of course, flowed over both "positive" and "negative" areas.
8. The depth of the Indus alluvium.-Except at onc station all gravity anomalies ($g-\gamma_{\mathrm{c}}$ and $g-\gamma_{\mathrm{F}}$), across the Indian desert are positive. The exception is Gorhelawāla (Station No. 207), where $g-\gamma_{\mathrm{F}}=-0.018 \mathrm{~cm} / \mathrm{sec}^{2}$. Deflections indicate that positive anomalies will be found not far to the south, so that the "positive" area around Jacobāhaid and Longwāli joins on to the more easterly atrea and there is no deep trough under the Indus alluvium.

A single proving of the bed-rock, under the alluvimu at any grarity station on this line would puable calculations of the depth of the alluvium to be made at the other stations if the deep, crustal conditions are miform.

As an illustration assume 1.00 feet of light alluvium (average density 1.8) at Station No. 209.

The negative anomaly due to this is $0.017 \mathrm{~cm} / \mathrm{sec}^{2} ; g-\gamma_{\mathrm{F}}$ $=+0.011 \mathrm{~cm} / \mathrm{sec}^{-}$so the positive anomaly due to crustal rise under this area is $0.0 .28 \mathrm{~cm} / \mathrm{sec}^{2}$.

Hence at Gorhelawala an anomaly equal to - 0.046 must be due to the alluvium, that is a depth of about 4400 teet of alluvium. This may he taken as a maximum limit of the probable depth of the alluviun at this place. At Gorhelawala the negative anomaly is evidently associated with the negative crustal area around Sibi and Dera Ghazi Khann: so that the positive element should be reduced. If the underlyiug crustal layers at Gorhelawala have come down to normal level the same assumptions will give a depth of alluvium there of only 1600 feet.

At Station No. 208 a boring of a few hundred feet only should reach the buttum of the alluvium.
9. Gravimetric observations.-At the beginning of the field season a Gradiometer made hy Messers Oertling \& Cos was receiven. On receipt the instrument was frumd to he damareed. Some screws had bent or sheared through, and the frame carrying the torsion tuln ete., was buckled. This was repairel at Dehra Dín. hut in the firld the instrument very soon became defective again.

Observations were made by Mr. L. D. Joshi at twenty-six stations. but the results are quite inconsistent, and are evidently marred throughout by instrumental clefects.

This failure is very disappointing; a gradiometer traverse lif miles long associated with pendulum and astrolabe observations would have been most interesting.
10. Gravity results and deflections.-There is goon general arreement between gravity and deflections on the line of the traverse. This is considered in further detail in Chapter IV Section II.

TABLE 1.-Times of vibration at Dehra Dūn, season 1930-31.

Adopted mean times of vibration.

TABLE 2.-Difference between individual and mean pendulums. season 1930-31. (The unit is 10^{-7} sec.).

Name of station		$\frac{\mathrm{C}+\mathrm{A}}{2}$	v	$\frac{A+B}{2}$	v
Dehra Dūn		$+5$	0	- 5	0
Longwali	..	+ 11	+6	-10	-
Gorhelawãla	.	$+5$	0	- 4	+1
Matwāri		$+7$	+ 2	-7	-2
Aqilwala		$+6$	+ 1	- 6	-1
Charanwāla		+ 8	+ 3	-8	-3
Uperthal		+8	$+3$	- 7	-2
Kolait		+ 6	$+1$	- 5	0
Ratangarh	\cdot	+ 6	+1	-6	-1
Deginna	..	+ 3	-	- 3	$+2$
Ajmer		$+6$	+ 1	- $\overline{0}$	0
Nimach	..	$+6$	+ 1	- 6	-1
Ratlim*		-19	-24	+ 19	+24
Shujãulpur		+ 2	- 3	- 2	$+3$
Piparia		+ 4	- 1	-3	+ 2
Pachmarhi		+ 5	0	-4	+1
Narsinghpur		+ 5	0	- 4	+1
Kotah	\cdots	+ 4	- 1	- 4	+1
Siwwai Mādhop		+ 2	-3	- 1	$+ \pm$
Ringas		- 1	- 6	+	$+7$
Rewäri	..	$+5$	0	- 5	0
Hissar		$+8$	+ 3	-7	-
Ambala		+ 4	- 1	- 8	+
Dehra Dinn		+ 2	- 3	- 2	+ 8
	N.ea	$+5$		- \quad	

*Omitted from mean.

TABLE 3.-Mean times of vibration and deduced values of g, season 1930-31.

Name of Station		CA	AB	Mean
Longwäli	s	0.5079273	0.5079294	0.5079284
	g	$979 \cdot 152$	979.146	979•149
Gorhelawāla	s	0.5079389	$0 \cdot 5079398$	05079394
	g	979-107	979.106	979.106
Matwāri	s	$0 \cdot 5079286$	0.5079300	0×5079293
	g	$979 \cdot 147$	$979 \cdot 144$	979.145
Aqilwîla	s	$0 \cdot 5079351$	0.5079363	0.5079857
	g	$979 \cdot 122$	979.119	$979 \cdot 120$
Charanwāla	s	0.5079340	0:5079856	05079848
	g	979-126	979'122	$979 \cdot 124$
Operthal	s	0.5079334	$0 \cdot 5079849$	0:5079342
	g	$979 \cdot 128$	$979.12 \overline{5}$	979126
Kolait	s	0.5079429	0'5079440	0.5079435
	g	979.092	979.090	979.091
Rhatangarh	s	0.5079415	0.5079427	0.5079421
	g	$974 \cdot 097$	979.095	979.096
Degãna	s	0.5079757	$0 \cdot 5079763$	0:5079760
	g	978.965	$978 \cdot 965$	978.965
Ajmer	s	$0 \cdot 5079720$	05079781	0.5079726
	g	$978 \cdot 479$	97897	978.978
Nimach	s	0.5080258	$0: 5080270$	0508 026-4
Ratlinn	\mathfrak{g}	978.772	978-7\%	978.771
	s	0:508 0426	0.5080384	0.0080407
	g	978.707	978724	978.716
Shuyiulpur	s	05508 0:351	0:508 0355	0 0504 0:3.73
Piparia	g	978736	978.737	
	s	05040523	050080530	005080.27
	g	978.670	974×669	978×669
Pachmarhi	s	0.5080969	0:508 0978	050080974
Narsinghpur	g	978498	$978 \cdot 497$	$978 \cdot 197$
	s	0.508 0437	0.50804 .46	0:50804.9
	\boldsymbol{g}	978.703	97870	95450
Kotilh	s	0507 09	0:507 9 9140	0.5076
Sawai Midhopur	9	$978 \cdot 842$	978×81	978.482
	s	0:5079896	$0 \cdot 5079899$	0.5079898
	g	978.911	978.91:3	478919
Ringns	s	0:50791611	$0 \cdot 5079608$	058079610
Rewari	9	979.021	979025	979083
	s	0.5079394	0.5079404	(-) 7 (0839
	g	$979 \cdot 105$	979103	479104
Hissir	8	0.5079195	$0: 5079210$	0.507508
Ambîla	9	979.182	979178	$979 \cdot 180$
	$\stackrel{s}{s}$	0.5079146	0.5079158	$0: 5079150$
	g	979:201	$979 \cdot 200$	$979 \cdot 200$

TABLE 4.-Modern gravity observations in India.
(Additions in field season 1930-31).

No.		Station	Date	Height	$\begin{aligned} & \text { Latitude } \\ & \text { N. } \end{aligned}$	Longitude E.	g	$g-\gamma_{\text {A }}$	$9-8{ }_{8} \mathrm{H}^{\text {a }}$
				feet	\bigcirc	- ,	$\mathrm{cm}^{\text {m }}$ /scc ${ }^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	cm!
206	39 L	Longwāli	51130	243	280205	5700028	979-149	+.001	-. $007+18$
207	40 I	Gorhelawàla	241130	319	275923	3704426	979-106	-. 031	- 044 - ${ }^{\text {a }}$
208	40 M	Matwari	81230	356	$27 \quad 6712$	2712544	979.145	+.014	+ 00
209	40 M	Aqilwila	151230	414	275340	071414	979.120	-. 001	-
210	40 M	Charanwila	211230	443	$27 \quad 53 \quad 37$	7715717	979.124	\cdots	-. 01
211	t5 A	Uperthal	291230	460	$27 \quad 5957$	717214.42	$979 \cdot 126$	+ $\cdot 001$	-
212	45 A	Kolait	$6 \quad 131$	709	$27 \quad 5005$	5725720	979-091	+ $\cdot 001$	-023-1
21	44 L	Ratingarh	$10 \quad 131$	1030	28 04, 20	0.74 3705	979-096	+.019	-.016 +
214	45 J	Degãna	13131	1112	265359	97419 25	$978 \cdot 965$	-. 018	-
215	45 J	Ajm	$20 \quad 131$	1587	262818	87443842	978.978	+.071	$\div \cdot 018$
216	45 L	Nimach	$28 \quad 131$	1602	24, 2750	$074+5048$	978-771	+.006	-
217	$46 . \mathrm{V}$	Ratlãm	$31 \quad 131$	1614	$23 \quad 2002$	2750303	975-716	$+\cdot 027$	-
218	55 A	Shujãıulpu	$5 \quad 231$	1480	$23 \quad 2246$	4.6764332	978.736	+.032	-. 0
219	55.5	Piparia	10231	1102	224504	0478 21	97x-669	-. 031	-
220	5.5	Pachmarhi	$13 \quad 231$	3498	$22 \quad 282$	38782542	978.497	+.040	-. 0.6
221	55 N	Narsinghpur	17 231	1180	225637	37791240	978-702	-. 001	- 0.41
222	4.) 0	Kotah	$25 \quad 231$	23	$25 \quad 1209$	$9975 \quad 5315$	978.882	-. 007	-0
293	5 B	Sawai Mȧdhopur	$28 \quad 231$	871	$26010{ }^{\text {c }}$	05762136	978.912	-. 030	- 0.64 .4 -
224	45.11	Ringat	+ 331	1573	272207	775 33 47	979-02:3	+ $\cdot 049$	-. 0
29.5	5,3 D	Rewiri	$7 \quad 331$	800	1241156	56763630	979.104.	-. 004	-. 0
$\because 26$	440	Hissanr	11 3 31	+i94	29091	4754314	979-180	-. 011	-
227	53 B	Ambila	7 731	888	$30201:$	13765000	979.200	- . 06.5	-

The anomalies are given with reference to Helmerts' formula of 190n $\gamma_{0}=978.030\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \mathrm{cm}^{2} / \mathrm{sec}^{2}$

Corrigenda. Supplement to Vol. VI, perge lxiv.
Station No. 119, under $g-\gamma_{0}$ for - 013 reat - 019 .
Station No. 12:, , , , for - $\cdot 062$ read - 072.
Nope. Thic tahb is the first addendum to the list of qravity stations given in the suf to Geodetio Rulurt Vol VI. Ademula to the list of deflection stations are given on pr ixd

Chapter VI

TRIANGULATION AND BASE MEASUREMENT

hy Captain G. Bomford, r.e.

1. Summary.-The season's programme consisted of primary triangulation in Burma with two detachments, and of the measurement of a base-line at Kengtung. The programme was satisfactorily completed with the result that the Siamese primary triangulation is now connected to the Mong Hsat and Great Salween Series in latitude $20^{\circ} 30^{\prime}$, and with the Burma Coast Series in latitude $10^{\circ} 30^{\prime}$. The party suffered a great loss in the death of Lieut. I. M. Cadell, r.s., from pneumonia at Loi Hkiao H.S. in the Southern Shan States on 27 th Dec., 1930.

Lieut. Cadell was in charge of the party uutil his death, when he was replaced by Captain G. Bomford, r.e.

Table 1 gives a summary of the work dom on these series, and also details of the Chittagong Series which have not previously been published.
2. No. 1 Detachment.-No. 1 Detachment muler the officer-in-charge of the party undertook the completion of the Mong Hsat and Great Salween Series and the base measurement at Kengtung. The detachment left Dehra Dūn on th Sept., ann started work at Lui Tekka on th Oet. The work was contimued towards the mast, as far as Loi Tum and Loi Pakulin, at which the Siamesc had observed in 1928-29. From these two stations the serips turned north to comect with last season's triangulation near Kengtumg.

Lient. Cadell fell siek after completing Lai Tang Hseng H.S. He managed to reach Loi Hkiao on 18th Dee.. but dien win eath Dec. H_{c} is buried in the dak bungatow compound at Mang Ping alout 40 miles to the north.

The posting of a new officer-in-charge from India inevitahly chused some delay, and the ohservations at Loi Hkian were not completed until 29 th January. The beginning of Felruary, however. gave a spell of exceptionally fine weather, and the remaining seven stations were completed by 22nd Feh., after which the hase infasurement was begun (ser pira if).

TABLE 1.—Primary Triangulation. 1928-31.

	Chittagong Series	Mong Hsat Series	Part of Great Salween Series	Part of Burma Coast Series
Season	1928-29-30	1929-30-31	1929-30-31	1930-31
Number of new stations built	1	7	8	4
Number of stations observed at \quad..	18	16	11	8
Length of triangulation in miles	140	184	75	50
Areal in square miles	1930	4220	2300	1006
Mean lengrth of sides in miles	21	27	29^{*}	22
Number of triangles observed	20	24	21	14
Average triangular error ...	$0^{\prime \prime} \cdot 63$	$0^{\prime \prime} \cdot 62$	$0^{\prime \prime} \cdot 97$	$0^{\prime \prime} \cdot 32$
Maximum triangular error ..	$3^{\prime \prime} \cdot 07$	$2^{\prime \prime} \cdot 09$	$9^{\prime \prime} \cdot 80$	$0^{\prime \prime} \cdot 64$
Value of m	0.4.53	0.441	$0 \cdot 682$	0.205
Value of M	$0 \cdot 45$	0.38	$0 \cdot 58$	$0 \cdot 19$
Value of p.. ...	$2 \cdot 18$	$1 \cdot 67$	$3 \cdot 04$	$1 \cdot 29$
Value of \mathbf{P}	2-09	$1 \cdot 35$	2.41	$1 \cdot 17$
Order of merit ...	$\begin{gathered} 22 b \\ \text { Wild No, } 39 \end{gathered}$	$\begin{gathered} 17 \mathrm{~A} \\ 12^{\prime \prime} \mathrm{N} . \mathrm{II} . \end{gathered}$	$\mathrm{We}^{27 \mathrm{~A}}$ Nild No. 130	$\begin{gathered} 1 \mathrm{~A} \\ 12^{\prime \prime} \text { No. II } \end{gathered}$
Instruments used	Wild No. 59	$\left\lvert\, \begin{gathered} 12^{\prime \prime} \text { No. II; } \\ \text { Wild No. } 130 \end{gathered}\right.$	Wild No. 130	$12^{\prime \prime}$ No. II

${ }^{*}$ Excluding base-net.
The theodolite used was Wild $5 \frac{1}{2}$-inch No. 130. Details of its behaviour arr griven in para 4 . On the whole it worked very well, and the prowamme would certainly not have been completed if a 12-inch thowlolite had had to be used. After correction for the effects of back-lash in the horizontal circle (see para 4), which gave trouble in the midnle of the season, the average triangular error of :3 trialloles is $0^{\prime \prime}$. 8 .

During the tirst half of the season, observations were made about equally to helios and to lamps, but during the second half helios werr almost exclusively used. A curious effect was observed at the three Kengtung Base stations. The rays along this base grase within 10 or 20 feet of the ground throughout their length, aud a herlin wa- consequently a very unattractive mark, large, in constant mowmont and sometimes vertically duplicated. At night the apperatace of a small lamp was both sharp and steady. Nevertheless it was found that observations made at night were (ompletely umeliable, the lamps drifting from side to side up to as much as.) or even 10 seconds from the mean, while in the afternoon careful bisection of the helio's vibrations gave results which were quite rasonably accordant, although repetitions were maturally much more frequent than is found necessary under more favourable circumstances. The early morning gave results similar to the night, while between about $11 \mathrm{a} . \mathrm{m}$. and $2 \mathrm{p} . \mathrm{m}$. the distortion and movement of the helio were too great for work to be possible.

BURMA COAST SERIES				
Beale $\frac{1}{1,000000}$ or 1.044 Inchee to 39 Mile				
Miles 10	10	20	$\stackrel{30}{1}$	

Geodetic triangulation of previous years \quad., \quad, 1930-31

Astronomical latitudes and azimuths were observed at five stations near Kengtung (see para 5). It is intended to observe longitude at Kengtung Base South S at some future date, and so to form a Laplace station.

The health of the detachment was poor in the early part of the season, but it was good during January, February and March, which were dry and healthy. One khalasi and one private servant died. From the point of view of triangulation the detachment was favoured with much better weather than during the previous year. Work was very seldom interrupted by clouds, and except that lamps were barely visible in February no interruption was caused by haze. Permanent mule transport (Chinese) was employed and was very satisfactory, the mules reaching the tops of all the hills except Loi Hpa-lan. Coolies and essential supplies were generally obtainable without difficulty.
3. No. 2 Detachment.-No. 2 Detachment under Mr. M.N.A. Hashmie, в.a., undertook the reconnaissance and observation of a junction between the terminal stations of the Burma Coast Series in latitude $10^{\circ} 30^{\prime}$ and the neighbouring stations of the Siamese primary triangulation. The detachment left Dehra Dūn on 4th Sept., 1930 and started observations at Khao Namnoi H.S. on 23rd Nov. After completing Khao Namnoi H.S. and Lampi H. S., it was found that the site of a new station Khao Klohng Kum was unsatisfactory, with the result that it had to be rebuilt on an adjacent hill, and the two stations already observed had to be revisited. After this delay observations proceeded well, and the work was completed on 10th March. Eight stations were observed at, including a satellite station south-east of Kawye H.S., where it was feared that a grazing ray might suffer from horizontal refraction. The theodolite used was 12 -inch No. II. Good results were obtained, the average triangular error of 14 triangles being $\pm 0^{\prime \prime} \cdot 32$. Observations were made to helios and lamps in about equal proportions. It was noticeable that distant helios seen over the sea appeared much more steady than when viewed at a similar distance over land.

The health of the detachment was poor, there being much fever and some cases of beri-beri. One daffadār and five khalasis died. During October, November and December 1930 rain and cloud caused continual interruption, but the weather improved during January and February. The very thick jungle makes for slow progress, and was the cause of the original misplacing of Khao Klohng Kum H.S. Transport is by coolies, who are obtainable locally but only at a heavy eost. Essential supplios, except water and firewool, have to be imported.

One of the stations built dioring the season, and two of the other stations visited, were in Siamese tervitory. Armugements harl previously been marle with the Siamese authorities, who gave all possible assistance to the detachment.
4. Wild theodolite.-The Wild theodolite used by No. 1 Detachment started the season well. The triangles of the first two quadrilaterals showed no traces of the tendency to measure too small, which had caused such trouble during 1929-30, the triangular errors being positive and satisfactory. The trouble then started again, and triangular errors of over two seconds resulted. Later in the season this tendency was remedied by a change in the observing programme, while the application of corrections deduced from the observations themselves (as explained below) has made it possible to go a long way towards rectifying the observations made between the onset of the trouble and the change of programme.

There is little doubt that the cause of this persistent under measurement during the last season was due to a taking up of back-lash in the fixing of the graduated circle during the first angle measured after any change of face, swing, or zero. After any such change it was always the practice to turn the telescope at least 180° in the direction of swing* before intersecting the first station, but it is evident that this is not sufficient. The condition of the theodolite is clearly illustrated by the abstract of angles observed at Loi Hsamhsao, shown on the opposite page. On the evening of 4th Feb., the angle was measured once on each face on each zero, as shown in the first line of the abstract. These measures may be called $\mathrm{L}_{1} \& \mathrm{R}_{1}$. On the following morning the angle was measured twice on face left and twice on face right on each zero, the two measures on each face being consecutive, without any break in the swing of the theodolite. These measures ($\mathrm{L}_{2}, \mathrm{~L}_{3}, \mathrm{R}_{2}$ and R_{3}) are shown in the second and third lines of the abstract. The means in the last column show that L_{2} and R_{2} are in good agreement with L_{1} and R_{1}, but that L_{3} and R_{3} average about $1^{\prime \prime} \cdot 8$ larger. The increase takes place in each separate zero. Further examination of the anglebook shows that in every single case the L_{3} circle reading of the first station observed is greater than the L_{2} reading, while the R_{3} circle reading is less than the R_{2}, indicating that during the first 360° the graduated circle has slipped in the direction of swing twenty times out of twenty. The average slip is $2^{\prime \prime} \cdot 1$.

It is clear that the measures L_{2} and R_{2} can be considerably improved by applying a correction for this slip, the only doubt being what proportion should be applied to the angle of the triangle $\left(40^{\circ}\right)$, and how much to the complementary angle (320°). Examination of the angle-book readings of the second station observer in each round shows that the slip in the 360° immediately following its intersection averaged only $0^{\prime \prime} \cdot 6$, and that the change was in the direction of swing only 13 times out of 20 : which indicates that comparatively little slip took place after the intersection of the second station. It therefore seems best to apply the whole of the slip to the first angle measured, and to assume that uo slip nccurred subsequently. Neither assumption is likely to be perfect, but the first frrs in the direction of making the accepted mean value of the angle too large, while the second tends to make it too

[^16]

	08.		20	＊0	00	－0	cs．		${ }^{\circ}$ ．					－0		90		86					пгәпк
80． 20	I－ 60	0.90	7．70	9． 00	6•0	2．90	2.80	$6 \cdot 60$	I•II	$8 \cdot 80$	2． 20	7．60	$\pm \cdot 80$	8．90	$8 \cdot 6$	キ・		20	2．90	I． 80	6．e0		${ }^{8} \mathrm{y} 8^{8} 7$
99．90	6．00	¢ 7.0	$2 \cdot 8.0$	C•和	$\ddagger \cdot 80$	I． 90	8．$\bigcirc_{0} 0$	0.80	$8 \cdot 90$	9． 20	I． 90	［ $\cdot 80$	$0 \cdot 9$	$9 \cdot 9$	$0 \cdot 6$	ع		10	9－90	0－s0	6．90		${ }^{6} \mathrm{Z} 8^{8}{ }^{6} \mathrm{~T}$
48．70	8． 60	9－80	I－ 70	I 80	6．80	¢．70	$6 \cdot 90$	＋－20	I－20	$9 \cdot 60$	c．so	$6 \cdot 90$	†． 70	I．so	$1 \cdot ¢$	I•		80	₹． 90	8．80	9－80		${ }^{1} 488{ }^{1}$ IT
surajk			${ }_{c}^{a} T$		${ }^{\text {y }} \quad \mathrm{T}$				．06									\％T		ฯ T		${ }_{\text {олaZ }}$	
												${ }^{8} 81$											

small. A certain amount of cancellation of the resulting errors may therefore be expected.

At the stations preceding Loi Hsamhsao the programme of observation on each zero was $L_{1} R_{1} R_{2} L_{2} L_{3} R_{3}$. Following the rule that all slip is to be applied to the first angle of any swing, it is seen that the first angles measured on L_{1} and R_{3} have to be totally rejected, since no measure of the slip is available: R_{1} and L_{2} duly receive the correction: and R_{2} and L_{3} require no correction, haring been immediately preceded by another round on the same face. Angles other than those between the first and second stations of each swing require no correction at all. Abstracts have been prepared on these lines* and Table 2 shows the resulting improvement in the triangular errors in the part of the series observed while slip was occurring. The great reduction in the mean error, taken with regard to sign, is very noticeable. The mean taken with regard to sign has, of course, no significance as a measure of the precision of the work, but it shows up the systematic slip in the uncorrected angles.

TABLE 2.-Result of correcting for slip of lower plate.

'Triangle				Triangular Errorb	
				Before correction for slip	After correction for slip
1	Putpakka, Me-mawm, Pakulin	-0'34	+ ${ }^{\prime \prime} 17$
2	Me-mawm. Paknlin, Tiang Hseng	\ldots		-2.21	-1.22
3	Tang Flseng. Pakulin, 'lum ..			-1.06	-0.08
\pm	Futpakka. Pakulin. Pahompok	-		-1.52	-0.69
	Tum, Paknlin. Pihompok		..	$+0 \cdot 20$	+1.03
1	Tamer Harug. Mr-mawm, Hkiao			-1.37	-0.66
7	Tang Hseng. Hkian, Hsamhsao			+0.46	+1.23
$\stackrel{4}{4}$	Tang IIsonı, Hkia, Hpa-min			-1.14	-0.32
9	Tang Hsunc, Hpatmin, Hsaminsao	\ldots		$+0.74$	+1.21
	Heamhsan. Hkian, Hpa-min	\ldots		-0.86	-0.35
11	Hsamhamo. Hpa-lian, akho			$-2 \cdot 40$	-0.88 -1.85
13	Makho. Hpa-lan. Mi			- $2 \cdot 63$	-1. ${ }^{5}$
Menn with regard to sign Mean without regard to sign				$\begin{array}{r} -1.01 \\ 1.24 \end{array}$	$\begin{array}{r} -0.20 \\ 0.80 \end{array}$

At the stations visited after Loi Hsamhsao the order of observation was changed to $L_{1} L_{2} L_{3}, R_{1} R_{2} R_{3}$, in consequence of which un, anger has to be rejected, even if slip occurs. Great care was takin to ensume continuity of swing doring the three measures on each fic". and after any change of face or zelo the thoodolite was swomer comul streral times in the rirection of swing, in the hope of taking up all hack-lash. The number of preliminary revolutions was rentually incrased to as many as 10 or 15 , and the good

[^17]central closure at Kengtung Base Centre S. $\left(0^{\prime \prime} \cdot 03\right)$ indicates that this was effective.

At the last seven stations zero was changed 9° when face was changed. Observations were thus made on 20 zeros, three face left measures on 10 zeros, and three face right on 10 others. The change of zero takes very little time and it was thought desirable in order to obtain fuller cancellation of graduation error.
5. Astronomical observations.-Astronomical latitudes and azimuths were observed at the three Kengtung Base stations and at the two stations on the hills immediately overlooking the base. The large deviations of the vertical which occur in this part of India, combined with the steep elevations of the rays connecting the base to the surrounding hills, result in an appreciable correction to horizontal angles due to the dislevelment of the theodolite. In the case of the angle Base North-Hpa-lan-Malrho this correction amounts to $0^{\prime \prime} \cdot 95$.

The latitude programme consisted of two north and two south circum-meridian stars, Polaris out of meridian being used as one of the north stars. The probable error of the mean at any one station is about $0^{\prime \prime} .8$. Azinuth was obtained by observation to Polaris, and the programme consisted of one face left and one face right on each of ten zeros. Observations were not confined to the hours near elongation. The average probable error of the mean at each station was $\pm 0^{\prime \prime} \cdot 5$. These latitude and azimuth programmes were intended to measure the deflection correct to 5 ", for which they were certainly adequate, although in the absence of any near Laplace station, doubt in the geodetic azimuth admits of rather greater uncertainty in the prime vertical deflection. The results are given in Chapter IV of this report, para 8 and Table 4.

The azimuth at Kengtung Base South S. was more carefully observed with a view to the later formation of a Laplace station. Polaris was observed three times on each face on each of 10 zeros. On 5 zeros Loi Makho H.S. was used as the referring mark, and on 5 zeros Loi Hpa-lan H.S., with the following results:-

| Azimuth of Loi Malkho H.S. | \cdots | 269° | 14^{\prime} | $55^{\prime \prime} \cdot 1$ | $\pm 0^{\prime \prime} \cdot 5$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Azimuth of Loi Hpa-lan H.S. | \cdots | 130 | 27 | $21 \cdot 3$ | $\pm 0 \cdot 5$ |
| Difference | \cdots | 138 | 47 | $33 \cdot 8$ | |
| Direct measure of angle * | \cdots | 138 | 47 | $32 \cdot 8$ | |
| Discrepancy | \cdots | | | $1 \cdot 0$ | |

The probable errors given abore were derived from the aceordance of the different zero means. The peolmiln, aror of the general mean may be taken to be $\pm 0^{\prime \prime} \cdot 4$.

Azinuth observations in the Survey of Lumbia have hitherto been made with a long programme utilizing viremon-polar stars nearly at elongation. The use of Polaris at all hours results in a much lighter programme, which is of course further lightenod ly the use of the Wild theodolite. The observation of the carefin azimuth at Krngtung Base South S. including the uncessary time observations (two nights), iuvolved only five hours of worl.

[^18]6. Kengtung Base.-The base-line is $7 \frac{1}{2}$ miles long and lies roughly north and south through the centre of Kengtung plain. It is divided into two halves by Kengtung Base Centre Station, and each half is divided into four sections of approximately 1 mile each. The base is sensibly straight throughout, and there is no correction for alignment. The north terminal is on the slopes of the hills hounding the plain, about 24 feet above the adjacent paddy fields. The centre station and south terminal are in the paddy fields, and are brick towers 4 and 9 feet high respectively. The line of the base is almost continuous paddy field interrupted only by a few streams with bamboo jungle on either side.

The detailed alignment of the base, and all the preparations for its measurement, were carried out by Mr. L.R. Howard. Mr. Howard prepared the stations and intermediate marks, cleared a line about 20 yards wide along the base, and put out carefully aligned pegs at 24 -metre intervals over which the tripods were afterwards set up. When the pegs fell in small streams or badly broken ground, platforms were built up to a convenient level. Earth ramps were also constructed sloping gently up to the centre and terminal stations.

The measurement of the base was carried out by Captain Bomford and Mr. P.K. Chowdhury, reading the two ends of the wires, assisted by a recorder and about 20 khalāsis. The tripods were set up in allvance by Mr. Howard with about 15) khalāsis. If personnel had been available another officer would have been employed on spirit-levelling along the pegs over which the tripods were plumbed. As this was not possible the pegs were levelled on off-days before and after measurement, any which appeared disturbed* being checkerl by Mr. Howard while setting up the tripods.

Six wires were employed in the measurement; Nos. 249 and 252 as standards against which the field wires were compared in camp every morning; Nos. 243 and 247 for the south to north measurement; and Nos. 244 and 248 for north to south. At each bay four scale readings were made on each wire, with additional readings if the range of variation exceeded 0.3 mm . When comparing the field wires with the two standard wires ten readings were made. the observers changing ends after the first five. Air temperatures were recorded at each bay by means of a clockwork aspiration themometer, and the temperature of the wires was assuminl egual to that of the airt. Heights of tripods were ohtainel by measuriug up from the spirit-levelled pegs with a tape, exerpt that where the slopes were sterp, spirit-levelling was carried out to staves placed on the tops of the triporls themselves. The

[^19]wires were "exercised" for an hour before work every day, being suspended under their usual tension and under light tension for alternate periods of about 10 minutes each.

The rate of work started at 60 bays a day (nearly 1 mile) and increased to 125 bays a day as the squad gathered experience. The total time required for measurement, including levelling and the repetition of two sections was 16 days. This of course excludes the clearing and aligning previously carried out by Mr. Howard, which occupied about 2 months.

The lengths of the wires were determined in the Observatory Section before and after the field season (see Chapter II, para 1), during which interval the wires maintained a satisfactory constancy of length, the four wires used for the actual work holding their lengths better than the two field standards (see Chapter II, para $1 j$). In these four wires the average change was $1: 2,500,000$, and the mean of the two observatory determinations has consequently been accepted for them, ignoring the daily comparisons. The wires were provided with certificates of coefficient of expansion as determined by the Bureau International des Poids et Mesures in 1908, but the systematic changes in the differences between the pairs of field wires between the cold of the morning $\left(13^{\circ} \mathrm{C}\right)$ and the heat of midday ($33^{\circ} \mathrm{C}$) soon showed that these values were no longer applicable. Provisional values were obtained in the field by the careful measurement of 10 bays in the early morning and again at midday, which have been confirmed by observations made on the 24-metre comparator in Observatory Section (see Chapter II, para $1 c$).

The lengths (in metres) finally obtained for the different sections of the base are:-

	Wire 243	Wire 244	$\begin{aligned} & \text { Wire } \\ & 247 \end{aligned}$	Wire 248	Mean
Section $\left\{\begin{array}{l}2 \\ 2 \\ 3 \\ 4\end{array}\right.$ Total South Half	$1487 \cdot 938$	1487.940	1487.940	1487-939	1487.939
	$1488 \cdot 277$	1488.284	1488-280	1488.282	$1488 \cdot 281$
	$1440 \cdot 322$	$1440 \cdot 325$	1440-324	$1440 \cdot 325$	1440-324
	1570.959	$1570 \cdot 960$	1570-961	$1570 \cdot 960$	1570.960
	5987-496	5987. 509	5987-505	5987.506	5987.504
Section	1512.513*	1512-513	1512-515*	1512.512	$1512 \cdot 513$
	1512.350+	1512.354 +	1512.352†	1512.353 +	1512.352
	1512.178	1512.182	1512.181	1512.181	$1512 \cdot 181$ $1199 \cdot 925$
	1199.205	1199-223	1199-226	1199.224	1193.220
Total North Half	$5736 \cdot 266$	57:36.272	2736.274	$5736 \cdot 270$	$5736 \cdot 271$

Mean tutal measured from S. to N. (243\& 247) $=11.723 .772$ motres
Mean total moasured from N. to S. $(244 \mathbb{d} 24)=11,723.754$ metres
General, Mran = $11.723 \cdot 775$ motres

[^20]The discrepancy of 0.006 metres between the two measures amounts to $1: 2,000,000$ of the total length of the base. The ratio of the lengths of the north and south halves of the base is also given by the angles observed at Loi Hpa-lan and Loi Makho. The ratio derived from triangulation differs by $1: 360,000$. from that given by direct measurement. This discrepancy can readily be attributed to errors in the (rather small) angles on which the triangulated ratio depends, and the direct linear measures have been accepted as correct.

The value given above for the length of the base is in metres as given by the silica and nickel 1-metre standards (1931 N.P.L. Certificates). Conversion to Indian feet* (tenths of old slandard Bar A), in terms of which the lengths of all other Indian bases are expressed, is effected by the relations:-

$$
\begin{aligned}
& 1 \text { standard yard }=0.914: 399 \quad 20 \text { metres. } \\
& 1 \text { Indian foot }=0.333: 331886 \text { standard yards. } \dagger
\end{aligned}
$$

The resulting length of the base at ground level is 38,46403 Indian feet.

For the reduction to sea-level it is necessary to consider the height of the base above the Everest spheroid. The mean height above the geoid, as given by spirit-levelling, is 2550 feet, but in Burma the geoid is considerably elevated above Everest's spheroid, on account of the axes of the latter being smaller than those of the mean tigure of the Earth. The number of deflection observations available is not sufficient for an accurate determination of the form of the geoid in Burma, but a sufficiently accurate figure for the geoidal rise at Kengtung will be obtained by assuming that the form of the groid is well represented by the International spheroid, so oriented as regards deflections at the origin as to make the best possible fit with the geoid in India. The separation between this spheroid and Everest's spheroid at any place is easily calculated. At Kengtung it is $2: 0$ feet, so that the spheroidal height of Kengtung may be taken as 2800 feet.

The length of the base reduced to sea-level (spheroidal) is therefore

$$
\begin{aligned}
& 38,458 \cdot 85 \text { Indian feet } \\
& \text { or } 4: 5849964 \log \text { feet. }
\end{aligned}
$$

This figure is he lieved to be undoubtedly correct to $2: 1,000,000$ or 8 in the 7 th decimal of the log. The probable error is of comse much less, (see Chapter IT, para $1 k$). The triangulaterd value in torms of the Mong Hat Series is 458.50036 and in terms of the Great Salween 4:5849893.

[^21]

Chapter VII

LEVELLING

by D. H. Luxa

1. Organization.-Eight detachments were formed and employed as follows:-3 on high precision levelling, 4 on secondary levelling, and 1 on tertiary levelling. Except for one high precision detachment and the tertiary detachment all the others were employed throughout the season.

Secondary levelling was carried out for the Bhakra Dam Project (Punjab Irrigation), Bihār and Orissa Flood Area, East Indian Railway and Burma Railway. The lines Tinpahär-Pirpainti-Purnea and Taunggyi-Kengtung were run for departmental purposes.
2. Summary of out-turn.-The total out-turn of levelling was as follows:-

3. Work of detachments.-No. 1 detachment under Mr. J. N. Kohli did the following high precision levelling, his total outturn being 465 miles ($00 . \mathrm{i}$ gross) with il miles of relevelments (31\% \ddagger).
(a) Baroda-Surat-Bombay 264 miles (289 gross) in fore direction along the B. B. and C.I. Railway line. This line forms part of the new net lines 112 and 122 .

[^22](b) Portion Khāmgaon to Akola in fore direction 38 mileg (42 gross) and Akola-Mhasvād-Dhūlia in the back direction 163 miles (174 gross) partly along roads and partly along the railway line via Bālāpur, Nāndūra Buzruk, Wadner, Malkäpur, Bodvad R.S. and Mhasvād. This line forms part of the ners net line 114 .

No. 2 detachment under Mr. P. B. Roy did high precision level. ling from Sehore to Dhūlia 256 miles in the back direction, following the old route of main-line 34 (Nāndgaon-Sironj) throughout. Total mileage was 256 miles (278 gross) with 116 miles of relevel. ments (45%). This line forms new net line 111.

No. 3 detachment under Computer P. John did the following high precision levelling, his total out-turn being 78 miles (10 i gross) with 4 miles of relevelments (18%).
(a) Branch-lines Mhasvād-Pāchora and Mhasvād-Shirsoli in back direction, along the G.I.P. Railway lines, 22 miles This forms part of new net line 114.
(b) Mhasvād-Khāmgaon in fore direction, partly along the road and partly along the railway line via Malkipur is miles ($8: 3$ gross). This forms part of new net line 11 l . On completion of the above lines, Computer P. John fell ill and was replaced by Mr. J. N. Kohli.
No. 4 detachment under Mr.Mohd. Faizul Hasan with Computer Sami Ullah Khan as second leveller was first employed on secondary levelling as follows:-
(a) Along detached sections of the railway falling in the Asansol Division for the East Inclian Railway. Total mileage 162 miles (171 gross).
(b) Tinpahair-Prpainti-Purnea was run for departmental purposes in order to detect the 2 -foot error revealed last field season, while carrying out levelling from Khana to Kiul for the East Indian Railway. Total mileage 78 miles (83 gross). It ran aloug the railway line up to Pirpainti and thence aloug ' the road and across country to Purnea, crossing the Ganges and the Eusi in route by target method, as modified by Captain i. Romford. The results of this levelling are discussed in Cbodotie Report Vol. VI, pages 104 to 106.
Owing to financial stringency the railway were compelled to stop the construction of bench-marks on the remaining sections. This derachment was hoken up and formed into a high preeision one and the following high precision levelling was carred out:-
(1) Jhinsi-Bina in the back direction. partly along the wal and partly along the railway line via Lalitpur 101 mila (109 gross). This forms part of new net line 109.
(2) Gwalior-Jhansi in the back direction along the main road via Datia, 64 miles (79 gross). This forms new net line 109A. In addition to the above, 20^{*} miles of checklevelling was done in Bikaner in both directions in connection with the proposed new Standard Bench Mark.
No. is detachment under Mr. I. D. Suri with Computer Hamid Ullah Khan as second leveller, was employed on the following secondary levelling in connection with the Bhakra Dam Project Area (Punjab Irrigation):-
(a) Ferozepore-Jagraon, partly along the railway line (Ferozepore-Jullundur section) and partly along the unmetalled road via Jogrwāla R.S. and Dharmkot. Total mileage 76 miles (89 gross).
(b) Mahna-head of the Bhadaur distributary, along the Harike-Sāhna road via Badhni Kalin. Total mileage 29 miles (31 gross).
(c) Balhni Kalān-Alamwāla, along Abohar Branch (Sirhind (Ganal) via Samālsar and Asa Buttar. Total mileage 63 miles (82 gross).
(d) Bhatinda-Dorāha, along the Bhatinda Branch (Sirhind Canal) via the head of the Bhadaur distributary. Total mileage 84 miles (99 gross).
(e) Islamwaila-Lambi, partly along the Bikaner main canal and Lambi distributary and partly across country via Danewäla, Dewan Khera and Waryan Khera. Total mileage 7 G miles (90 gross) 。
(f) Fanmmangh-Hissin, partly along the southern and northern Ghagrar (Incmdation) canals and partly across country via Sirsa, Bhädra and Bialsamand. 'Iotal mileage 132 miles (150 gross).
(!) Hissür-Bälsamand, partly along the road and railway line amd partly across country via Hansi, Bhiwāni, Roda and Siwini. Total mileage 100 miles (114 gross).

No. 6 detwehment under Mr. A. A. S. Mathoh Ahmad with Computer Yasuh Hasan as second leroller, was employed on the following secondary levelling in comection with the Bihar and Orises Floned Area (Irvigation).
(a) Muhammadnagar Patna-Bhadrakh, partly along the Orisam const canal and the Chandbabli-Bhadrakh roal ame partly across country via Bātharan, Balasore, Bideipur and Pir Hat. Total mileage 152 miles (156 gross)
(b) Bhadrakh-Cuttack, partly along the Orissa Trunk road and railway line and partly along the high level canal via Jenāpur and Choudwār. Total mileage 91 miles (102 gross).
(c) Cuttack-Pir Hat, along the Orissa Trunk road for a short distance and mainly across country via Achyutpur Kendrāpāra and Chāndbāli. Total mileage 149 miles (149 gross).
No. 7 detachment under Mr. B. P. Rundev with Computer I. M. Saklani as second leveller, was employed on the following levelling :-
(a) Mandalay-Sagaing, secondary, along the railway line via Amarapura Shore, crossing the Irrawaddy en route by target method, as modified by Captain G. Bomford, making use of an island, the width being about 66 chains. Total mileage 17 miles (19 gross). This work was carried out for the Burma Railmar in connection with the Irrawaddy bridge between Sagaing and Amarapura.
(b) Taunggyi-Kengtung, precise, partly along the motor road and partly along the bridle-path via Loi Lem and Takar. crossing the Nampang and the Salween rivers en route by direct levelling. This line was carried out to correct trigonometrical heights of the Mong Hsat series, and eventually to effect a connection with the high precision levelling of Siam. Total mileage 261 miles (276 gross).
Terticry levelling.--Owing to large discrepancies having been noticed between the Surver and P.W.D. levelling, this party had to undertake the revision of the E. to W . lines of single tertiary lovelling in 64 sheets, amounting to 6,100 linear miles in the Bahamal. pur State, of which about 600 iniles were partalled and revised this tield season, under Computer Syed Nayar Hasan, the remaining portion will be carriel out during 19:31-3?.
4. Probable Errors.-Probable errors of the high precision • lines have been computed by the formulx:-

$$
\sigma_{r}=\frac{\mathrm{S}}{3 \mathrm{~L}} ; \quad \eta_{r}=\sqrt{ }\left[\frac{\Sigma \Delta^{2}}{9 \mathrm{~L}}-\sigma_{r}{ }^{2} \times \frac{\Sigma r^{2}}{\mathrm{~L}}\right]
$$

where $\sigma_{r}=$ probable systematic error.
$\eta_{r}=$ probable accidental error.
$\Delta=$ discordance of the results of the fore and back levelling between consecutive hench-marks.
$\mathrm{S}=$ total discordance.
$r=$ distance between consecutive bench-marks.
$\mathrm{L}=$ total distance.

These are given below in foot and mile units :-

Line	Probable accidental error	Probable systematic error		
111	Sehore-Dhūlia	\ldots	± 0.00370	± 0.00040
109	Jhānsi-Biña	\ldots	± 0.00320	± 0.00016
109 A	Gwalior-Jhānsi	\ldots	± 0.00285	± 0.00004
114	Dhūlia-Akola	\ldots	± 0.00287	± 0.00036

Permissible probable accidental and systematic errors are ± 0.00416 and ± 0.00106 feet respectively.

Probable errors of secondary levelling were computed by the
 two levellers, and L the total distance.

These are given below in foot and mile units:-

5. Progress of the new level net.-The following additions were made to the completed mileage of the new level net:-

Line No	Name of Line	Miles completed on main-line	Remaris
111	Sehore-Dhūlia ...	256	The whole line is complete.
109	Jhānsi-Bina	101	Do.
109A	Gwalior-Jhānsi ...	6.4	Do.
114	Dhūlia-Nāgpur	163	Portion Akola-Nāgpur not completed yet.
	Total	584	
	Previously completed	8.199*	
	Total completed to date	8.783	

In addition to the above, 264 miles have been completed in one direction only which is equivalent to 132 miles in both directions making an equivalent total of 8,915 miles. The total mileage of the new level net is now about 15,800 miles.

[^23]TABLE 1.-Tabular statement of out-turn of work, season 1930-31.

$\begin{aligned} & \text { Detrichments } \\ & \text { nad } \\ & \text { lines levelled } \end{aligned}$	Months	Distance levelled			Total number of feet		Meannumber ofstationsat whichlthe ins.trumentswereset up	Number of bench-marks connected		
				Total	Rises	Falls		Primary		晨
		Mrs.	Mls.	Mls.	feet	feet				
So. 1 Detachment.										
Part of line 112 Baroda-Surat (fore)	Oct. 30 to Nov. 30	95	11	106	826	812	1.182		10	123
Part of line 122	Nov. 30 to Dec. 30 \&									
Surat-Bombay (fore)	Mar. 31 to April 31	169	14.	183	1,88:	1.444	1.990	\ldots	4	205
Part of line 114 Khimgaon-A kola (fore)	Dec. 30	36	4	$4: 2$	960	836	522	\ldots	2	41
Part of line 114 Dhùlia-Akola (1) (back)	$\begin{aligned} & \text { Dec. } 30 \\ & \text { to Mar. } 31 \end{aligned}$	163	11	174	3.433	4.050	2,144		5	183
$N_{0,2} 2$ Detachment.										
Line 111 Sebore-Dhūlia (2) (back)	Oct. 30 to April31	256	22	278	6,707	5,995	3.770	\cdots	4.	345
No. 3 Detachment.										
Parts of line 114 (a) MhasvaidKhämgaon (fore)	$\begin{aligned} & \text { Oct. } 30 \\ & \text { to Nov. } 30 \end{aligned}$	78	5	83	2.348	1.821	1.178	.	2	84
(b) Branch-lines at Mhasvàd (3) (back)	Oct. 30		22	22	265	100	254	\ldots	\ldots	6
No 4 Detachmenl.										
Part of line 109 Thäsi-Bina (4) (back)	Jan. 31 to Feb. 31	101	8	109	1.622	2.132	1.464	..	2	133
Line 109A Gwalior-Jhninai (5) (back;	$\left\|\begin{array}{c} \text { Mar. } 31 \\ \text { to April } 31 \end{array}\right\|$	(i4	15	79	1.239	1,689	1,100		3	97
Check-levelling \& branch-line at, Bikaner (fore)	April 31	\ldots	10	10	57	114	126		1	\& 10*

*Temporary marks.
(Continued).
(1) Relovelled 51 miles
(2) Relevelled 116 miles. (3) Relevelled 4 miles.
(4)
" 15
(5)
10 " •

TABLE 1.—Tabular statement of out-turn of work,

 season 1930-31-(contd.).

* Temporary marks.
(Continued).

TABLE 1.-'Tabular statement of out-turn of work, season 1930-31-(concld.).

$\begin{aligned} & \text { Detachments } \\ & \text { nunu } \\ & \text { lines levelled } \end{aligned}$	Months	Distance levelled			Total number of feet		Meannumpler ofstationsat whichthe ins.trumentswereset up	Number of bench-marks connected										
				Total	Rises	Falls		Primary										
								(¢									
		Mls.	M1s.	M1s.	feet	feet												
No. 5 Detachment.																		
Branch-line 57P Islāmwāli-Lambi	Jan. 31	75	17	92	467	438	822			104.								
Branch-line 57Q																		
Hanumnngarh- Hissiar	$\begin{aligned} & \text { Feb. } 31 \\ & \text { to Mirr. } 31 \end{aligned}$	132	18	150	1,09:3	1,010	1,870		3	120								
Rranch-line 57R																		
Hissir-Balsamand	$\begin{gathered} \text { Mar. } 31 \\ \text { to May } 31 \end{gathered}$	100	14	114	1.369	1.386	$1.20 x$		\because	9								
Wo. 6 Detuhment:																		
Branch-line 7.ib i																		
nagar Patnillinadrakh	$\begin{gathered} \text { Tan. } 31 \\ \text { to Mar. } 31 \end{gathered}$	152	\pm	1.30	1.120	1.121	1.730		2	± 1								
Branch-line 75C																		
BhadrakhCuttack																		
	to Nov. 30	91	111	102	726	$68: 9$	1.014		2	so								
Branch-line 75D	Nov. 30																	
Cuttack-Pir Hāt	to. Jian. 31	149		149	1.092	$1.17 i 6$	1.21		\because	80								
Yo. 7 Detachment.																		
Part of branch -																		
line 88 K Taung-gyi-Me-Sai																		
Bridge (:iamese																		
Border). portion																		
Talunggyi-Kengtung	$\begin{gathered} \text { Nov. } 30 \\ \text { to April } 31 \end{gathered}$	261	1.5	$\underline{276}$	29,488	28.640)	8.481		10	$\because 17$								
Part of line 89																		
MandalaySagaing	Oct. 30		2	19	343	33.4	206		3	22								

TABLE 2.-Check-levelling.
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected for check-levelling				Observed height above (+) or below (-) starting bench-mark, as deternined by			
No.	Degree sheet	Description		Date of original levelling	Original levelling	Checklevelling 1930.31	
			miles		feet	feet	feel
At Baroda on line 112.							
48	46 F	Standard (Type P)...	$0 \cdot 00$	1909-10	0.000	0.000	0.000
		Plinth of kothi ...	$0 \cdot 03$	1928-30	+ 1.049	+ 1045	-0004
117		Plinth of office	0.09	1909	+ 1302	+ 1 '293	0.009
	"	Flooring of office	$0 \cdot 19$	1928-30	+ 1340	+ 1337	-0.003
119	.,	State library	0.30	1909	+ 1.847	$+1.837$	-0.010
120	,	Step of office	$0 \cdot 36$		+ 2390	+ 23381	- 0.009
*	,	Flooring of office ...	$0 \cdot 43$	1928-30	+ 3384	$+3.383$	-0.001
116	"	Plinth of portico ...	0.86	1909	- 18.958	-18.961	-0.003
17	,	T'emple	0.96	",	- 21.517	- 21.542	-0.02\%
114	,	Stone sill	1 31		- 14.906	- 14:915	- 0.008
113	..	Step of museum	$1 \cdot 73$		- 17673	- $17 \cdot 679$	-0.006
112	,.	Stap of church	233	",	- 18.931	-18.920	+0.011
14	,	Embedded B.M.	$2 \cdot 70$		- 18.120	$-18 \cdot 136$	-0014
At Sural on lines 112 and 122.							
70	45 C	Standard (Type P)	$0 \cdot 00$	1909-10	0.000	0000	0000
71 (69)	..	Step of school	014	1921-22	- 8483	- $8 \cdot 839$	
68			$0 \cdot 20$	\& 26-27	- 3666	- 3679	- 0 0014
67	',	Paving at hospital	0.49	1875-78	- $2 \cdot 236$	- 2245	- 00009
72 (66)	,"	Plinth at reservoir	065	1921-22	+ 2508	+ 2502	- 0006
73 (.96)	\cdot	Step at clock tower...	1'10	\& 26-27	- 3.008	- 3091	+ 00007
	,	Praving at rispensary	$1 \cdot 13$	187\%-78	- 1.339	- 1337	+0.002
74 (45)	,	Step at dharmshăla	1.81	1921-22	- 1563	- 1498	+ 0.06
75 (6.3)			108	\& 26-27	+ 15.471	+ 15.512	+0.041
76 (64)	",	Emberded B.M.	1:98	*	+13.71 $+\quad 13977$	+ +13.912 +13	-0.029
Al Bombay \dagger on line 122.							
1 (\%)	478	Standard ' Type P)	$0 \cdot 00$	1906.07	$0 \cdot 000$	$0 \cdot 000$	no(m)
84		Stup at university ...	0.26	",	- 3540	- 3525	+ 0.01 .5
57	,.	Strp at univareity ...	$0 \cdot 26$	".	- 34.45	- 344	+ 0 (10)
¢4	,	St-p of fombtain	O\% ${ }^{\text {c }}$	191 1-15	+ 25.54 .4	+ 2584	+ 019 ml
129		Newel at A pollo pier	$0 \cdot 90$		- 2.477	- 2958	+0.01. +0.015
1:30 (9)	"	Flooring at Apollo bandar	$0 \cdot 95$	1906-07	- 6.035,	- 6.020	+0.01.
85	"	Stone at band-stand	1'51	1914-15	- 7.171	- 7161	+0.010 +0.0061
R9	"	Step at Colãba R.S.	$2 \cdot 25$		- $5 \cdot 624$	- 5618	$+0.00 \mathrm{Hf}$

(Continued).

[^24]TABLE 2.-Check-levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

(Continued).

[^25]TABLE 2.-Check-levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected for check-levelling				Observed height above (+) or below (-) starting bench-mark, as determined by			
			miles		feet	feet	feet
At Sehore on line 111.							
151 (2)	55 E	Embedded B.M.	000	1928-30	$0 \cdot 000$	$0 \cdot 000$	0.000
152	",	Step of P. \& T. O. .	$0 \cdot 08$	\because	+ 0.047	$+0.005$	-0 042
153	"	Step to well ...	$0 \cdot 18$		- 1.458	- 1.473	-0.015
150	,"	Curb of well ...	$0 \cdot 49$	",	+ $15 \cdot 728$	+ 15721	-0.009
149	,	Plinth of kachahri ...	$0 \cdot 53$		+ 12.777	$+12 \cdot 767$	-0.010
148	,	Flooring of hospital	$0 \cdot 60$,	+ 11924	+ $11 \cdot 911$	-0.013
147	,	Curb of well ...	0.84	"	+ 13.902	$+13 \cdot 895$	-0.007
154	,	Tomb	$0 \cdot 36$		- $8 \cdot 783$	- 8.784	-0.001
155	,	Road culvert	1.00		+ 15296	+ $15 \cdot 292$	-0.004
156	",	Curb of well	$1 \cdot 18$		+ 21.417	+ $21 \cdot 450$	$+0.033$
157	"	Plooring of veranda	$1 \cdot 25$		$+23 \cdot 043$	$+23.073$	$+0.030$
At Dhūlia on line 111.							
107	46 L	Standard (Type P) ...	$0 \cdot 00$	1909-10	$0 \cdot 000$	0.000	0000
$147{ }^{(106)}$,,	Flooring of school ...	$0 \cdot 26$	1926-27	- 5489	- 5.515	-0.026
148 (108)	,	Step of clock tower ...	$0 \cdot 56$,,	- 2971	- 3.003	-0.092
109	,	Paving of veranda	0.69		+ 2246	+ 2224	-0.022
110	,	Plinth of school ...	0.88	"	+ 11.279	+ 11'26]	-0.018
77 76	"	Bridge ...	1.04,	"	$\begin{array}{r}8.628 \\ +\quad 12946 \\ \hline\end{array}$	$+\quad 8.621$ +12.936	-0.007 -0.010
76 111	"',	Milestone	1.24 2.09	"	+12.946 $+\quad 37563$	$+12 \cdot 936$ $+\quad 37.565$	-0.010 +0002
149 (75)	",	Bridge ...	2.09 2.11		+ + + +	+ 42.067	-0.012
112	"	Rock in situ	$2 \cdot 60$		+ 63.566	+ 63.569	+0.003
At Jhansi on line 109.							
51	54 K	Standard (Type P)...	$0 \cdot 00$	1906-07	$0 \cdot 000$	0.000	0.000
50	..	Stone step	0.03	190	- 07798	- 0800	- 0.002
49		Stone step	0.07		- 0.747	- 0765	- 0.010
111	,	Rock ...	0.86	1917-18	- 12.000	- 12.000	0000
110	\cdots	Stone flooring	$1 \cdot 36$,	- 42.993	- $42 \cdot 996$	-0.003
109 108	"	Rock	$1 \cdot 69$,	- $39 \cdot 409$	- 39.434	-0.023 -0.015
108 47	.	Stone flooring	1.75 1.00		- 31.754	$\begin{array}{r}\text { - } 31769 \\ +\quad 23: 355 \\ \hline\end{array}$	-0.002
43		Stone flooring Ry. platform	1.00	1906-07	$\begin{array}{r}23353 \\ +\quad 2405 \\ \hline\end{array}$	$\begin{array}{r}+2336 \\ +\quad 2464 \\ \hline\end{array}$	+0059
44		Ry. platform	1.69		$+\quad 2405$ $+\quad 2369$	$+\quad 2 \cdot 361$ +	-0.008
48	"	Stone flooring \ldots	2'16		$+\quad 2369$ $+\quad 8.548$	+ 8.557	$+0009$

TABLE 2.-Check-levelling-(concld.).
Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling.
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected duriug the revisionary operations				Difference between orthometric heights, nbove (+) or below (-) the starting bench-mark			
	($\begin{gathered}\text { Degree } \\ \text { sheet }\end{gathered}$	Description		Date of original levelling	From published heights	From revision 1929.31 (un. adjusted)	
			miles		feet	feet	feel
(Dhülia to Akola) old lines 34 and 35, new 114.							
107	46 L	S.B.M. at Dhīlia	000	1909-10	0.000	$0 \cdot 000$	0.000
147 (106)	",	School ...	$0 \cdot 25$	1921-22	- 5.489	- $5 \cdot 501$	-0.012
148 (108)		Step of clock		\& 26-27			
	,	tower	$0 \cdot 53$		- 2971	- 2991	-0.020
109	"	Verandia of tahsil ...	0.65	1909-10	+ 2246	+ 2238	- 0.008
110	,	Flooring of school ..	$0 \cdot 82$		+ 11.279	+ 11"211	- 0.008
77	.,	Bridge	$0 \cdot 97$	187ヶ78 \& 83-84	+ 8628	+ 8.637	+ 0.009
76	"	Top of milestone	$1 \cdot 17$	1909-10	+ 12946	+ 12.946	0.000
111	,	Rock	2.01		+ 37563	+ 37576	+0.013
112		Rock	$2 \cdot 52$	"	$+63566$	+ 63.578	+0.012
45	46^{1}	Briclge ... ${ }^{\text {... }}$	50.01	$1877-78$ 890.92	-174439	- 174:480	-0.041
49	"	Well	53.29		- 164:300	$-164 \cdot 288$	+ 0012
40	.	Embedrled at Mãheji R.S.	54.48	"	- 61591	- 61.832	-0241
34	:	Brielge .. R.S.	58.15	"	- 57973	- 58.220	-024i
3.4	..	Emberded at Pāchora RS.	63:57	.	- 0.631	- 0.921	-0200
3	55 D	Coping of platform	88.21	".	+ 103'544	$+103545$	-0.004
t	..	Emberded at Bodvad R.S.	$88 \cdot 22$		+ 103267	+ $103 \cdot 247$	-0020
4	.	Culvert	93.37		+15.980	+ 16032	+0.052
10	,	Culvert	94.78		- 24156	- 22751	(${ }^{+}+1405$
$1 \pm$.	Culvert	97.57		- 36.649	- 36521	$1+0$
1:	.	Culvert	98.45	,	- $26 \cdot 813$	- 25.017	$7+1796$
17	,.	Emhedded at Malkāpur RS.				- 38936	-0003
38	.	Coping of platform .	$119 \cdot 16$	".	$-\quad 38.938$ $+\quad 11028$	+ 11.104	+ +0.06
34	..	Embedrled at Nōndíra R.s.		"		+ 10.752	$+0 \cdot 100$
5	5.5 H	Flooring	$119 \cdot 17$ 16250	..	$+96.498$	$\begin{array}{r} 1072 \\ +\quad 96.506 \\ \hline \end{array}$	16
3 4	..	S.B.M. at Akola	162'59	1904-09	$\begin{array}{r} 95756 \\ +\quad \end{array}$	+ 9.757	
4	.	Flooring	16346	$\begin{aligned} & 1877-78 \\ & 890-92 \end{aligned}$	+ 69:332	+ 693355	- +022
2	.,	Embedded at Akola R.S.	16372	.	+ 62926	+ 62940	+ 0014

TABLE 3.-Revision levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			Difference (revision original). The sign + that the height was greater and the sign - , less in 1929-31 than when originally levelled
No.	Degree sheet	Description		Date of original levelling	From published heights	$\begin{gathered} \text { From } \\ \text { revision } \\ \text { 19299-:in (un. } \\ \text { adjusted) } \end{gathered}$	
			miles		feet	feet	feet
(Sehore to Dhūlia) old line 34, new 111.							
151 (2)	55 E	Embedded at Sehore	$0 \cdot 00$	$1877-78$ $883-84$	$0 \cdot 000$	$0 \cdot 000$	0.000
1566	55) A	Embedded at Amlai	12.95	d	- 46660	- 4910	-0250
157 (5)	,	Sati tomb	$12 \cdot 98$,.	- 7.15]	- 6960	+ 0.191
166 (2)		Embedded at Ashta	$26 \cdot 16$		- 10.332	- 10722	-0.390
35 (26)	55 B	Shrine	$45 \cdot 55$		+ 41.052	+ 39701	-1351
$39(25)$,	Mile	47.65	,	- 0.983	- 1415	-0.432
24	"	Embedded at Daulatpur	$48 \cdot 56$		- 28841	- $2 \cdot 877$	-0.036
41 (23)	"	Culvert ...	4933	",	- 18.276	- 18.284	-0.008
43 (22)	,	Mile	$50 \cdot 70$		- 32515	- 35.178	- $266{ }^{\text {a }}$
45 (21)	"	Bridge	51.26	"	- 62529	- 62.765	- 0236
48 (20)	,"	Mile	$52 \cdot 5$	",	- $59+415$	- 61.686	- 2.271
50 (19)	,	Bridge	53.79	,	- 67.299	- 67:315	-0.016
$52(18)$,	Culvert	$55 \cdot 35$		- 25.088	- 25.084	+0.004
	,	Bridge	56.99		- 46.488	- 46.537	-0.049
69 $60(18)$ $60(12)$,	Mile	61.88		- 13.780	- 13.144	+0.586
$60(18)$.	Culvert	6243		- 07729	- 0.695	+0.034
$63(12)$,	Culvert	64.75	",	+ 57898	+ 57.926	+0.027
64 (11)	"	Culvert	65\%26	.,	+676-428	+ 66464	+0.036
66 (10)	\cdots	Gulvert	6.6.79	.,	+110508	+ 110.552	+0.044
67 68 68 8	.	Culvert	67.84		+120452	$+120 \cdot 48 \mathrm{G}$	+0.034
$\begin{array}{ll}68 & (8) \\ 71\end{array}$,	Culvert	68.68		+154:161	$+153.695$	-0.466
71 (6)	.	Bridge	71.53	'.	+ 168.060	+168.003	-0.057
72 (5)	"	Embedded at Dewñs	71.81	.	+171721	+171.771	$+0.050$
73 75 75	,"	Ntep to quarters ...	$73 \cdot 01$,	+134.991	+140.018 +109.011	+0022 +0.389
75 76 76 68	,	Milo \quad.	74.39	.	+110400	+109.011	- 13889
76 89 89 8.82$)$		Mile	$75 \cdot 39$		+125:521	$+125 \cdot 290$	- 0.231
89 81 81	46 N	Mile	$78 \cdot 40$.	+ 84:517	+ 84104	-0.413
90 (80)	",	'Temple ...	79.25 8045 81.5	"	 + + + +76570	$+\quad 44562$ +76296	$\begin{array}{r}-0.109 \\ -0.274 \\ \hline\end{array}$
91 (79)	"	Mridge	804.5 81.25		+8057 $+85: 518$	+ 8.4685	- 0.838
93 (76)	",	Mile ${ }^{\text {a }}$	83.45		+ 109.997	+ 109\%27	-0.070
95 (0.5)	,	Mile	8545		+157-490	+ 157509	+ 0019
74 73	,	Mile	86		+131.029	$+130!107$	-0122
73 98	,	Bridge	87.85		+ 145.735	+ $1445 \cdot 112$	-0.0.23
$98(72)$,	Mile - ...	88.45		+ 1515137	+ $155 \cdot 318$	-0.419 -0.118
$101 \text { (ic }$,"	Mile	9044		$+185 \% 58$	+ 1855 540	- 0.118
105 109 109 (6)	"	Mile	9323		+ 190856	+190507	-0.349
109 (68)	,	Embedded at Indore	94.40		+180.017	+ 188.758	-0.259
111 (66)	,	Bridge	94.84		$+189 \cdot 051$	$+188 \cdot 91 \cdot 1$	-0.137 -0.143
113 (65)	"	Bridge ...	96.11	",	+ 1966696	+196.553	-0.143

(Continued).

TABLE 3.-Kevision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the origimal levelling that were connected during the tevisionmry operations				Difference between orthometric heights, above (+) or below (-) the sturting bench-mark			
No.	Degree sheet	Description		Date of originna levelling	From published heights	$\begin{gathered} \text { From } \\ \text { revision } \\ \text { 1929.31 (un. } \\ \text { ndjusted) } \end{gathered}$	
			miles		feel	feet	feet
(Sehore to Dhūlia) old line 34, new 111.-(contd.),							
115 (63)	46 N	Bridge ..	97.85	$1877-78$ \& 83-84	$+227 \cdot 277$	$+227150$	-0.12i
117 (62)		Bridge	99.69		+ 252.596	+ 252490	-0.105
119 (61)	"	Gate-lodge	101-33		+ 288.295	+ $288 \cdot 173$	-0.12
120 (60)	.,	Platiorn	101.78	"	+ 299.674	+ 299512	-0.162
59		Railway bridge	103.19		+ 280.872	+ 280.696	-0.176
124 (57)	,	Railway bridge	105.74	1909-10	+ 240.409	$+240.554$	+0.145
56	.,	Rialway bridge	106.33	1877.78 $\& 83.84$	+ $240 \cdot 715$	$+240 \cdot 520$	-0.193
125 (52)	..	Railway bridge	106.84	1909-10	+ 245.095	+ 245368	+ 02473
	-	Embelded at Mhow	107.81	"	+ 270.538	+ 270.332	- 02006
126 (88)	..	Temple	108.00	,	+ 272.857	+ 272.616	-0.241
127 (87)	"	Stone	108.51	",	+ 270.522	+ 270'274	-0.248
86		Church	109.24		+ 317.340	+ 317129	-0.221
128 (85)		Bridge	109.56	,	+ $291 \cdot 456$	+ 291.214	-0.242
${ }_{138}^{83}(49)$		S B. M at Mhow	110.31		+313603 $+\quad 298.080$	+ 313.387	-0.216 -0.828
$130(49)$..	Mile ${ }^{\text {a }}$	111.23	$\begin{aligned} & 187 \ddot{7}-78 \\ & 883-84 \end{aligned}$	$\begin{array}{r} +\quad 010000 \\ +\quad 298.080 \\ \hline \end{array}$	+ 297.252	-0.828
131 (54)		Mile	$112 \cdot 33$		+ 371538	+ $371 \cdot 291$	-024
132 (10)	\cdots	Mile	113.23	"	+ 365.514	+ 365591	+0.077
$13: 3$ (16)		Mile	114.25	"	+ 406.902	$+406.721$	-0.181
$136(H)$		Milu.	11ti.30		+ 441.841	+ 441×66	-0.181 -0.461
140 (12$)$		Mile	120.34		+ 296.936	+ 206475	$-0+461$ -1.250
14.3 (119)	"	Singarehori HS	125.05	.,	$+1274 \cdot 406$	+1273.15h	- $\begin{aligned} & 1.250 \\ & -0.215\end{aligned}$
$144(11)$ $1+9(.38)$		Mile \ldots.. \ldots	121.35		+ 329.836	+ 329.621	-0.215 $-0.1 \mathrm{k}^{2}$ -02
$1+9(38)$ $151(.37)$.	Embedded at Mānpur	124.51;	,, 1	$1+226.428$	+ 226.266	-0222
154 (3.5)		Mile	125.58	"	+ 198.734 $-\quad 59.897$	$+\quad 198.522$ $-\quad 60.444$	-0.j4
15.5 (34)		Bridge	128.14,		- 170.964	- 171.106	-0.14
154 (3.3)		Mils	$128.49{ }^{\text {' }}$	",	- 126698	- 127.633	-0,933
32		Mile	129.50		- 167501	- 167.756	-0.239
$157(: 3)$		Miln	130:51		- 172949	- 173.395	-0.4+1
30		Bridue ...	133.08		$-\quad 652: 331$	- 652.572	$\begin{aligned} & -0.2+1 \\ & -0.284 \end{aligned}$
16: (39		Mile	13455		-731842	732.126	- 02028
18.3 (2,		Mile	$135 \cdot 55$		\|- \%06.833	- 807.56\%	-0.93 -0.358
27		Mile	13655		- 8524.47	- 83.685	-0
${ }^{26}$		Embedtled at Ginjri	13713		$\text { - } 456596$	- 856.861	- ${ }^{-1017}$
$\begin{aligned} & 172(22) \\ & 173 \text { (21) } \end{aligned}$	"	Mile	142.61	",	-1007.568	$\begin{array}{r} 1008585 \\ -1029.724 \end{array}$	-101 -0.51
$\begin{aligned} & 173(31) \\ & 176(19) \end{aligned}$	"	Milo Milo	$1+3$ 61 ${ }^{\text {c }}$		-1029152	-1029.724	$\left\{\begin{array}{l} -0.62 \\ 1 \\ -0.431 \end{array}\right.$
179 (1.4)	".	Mile	14565 145	"	- 1064.888	- 1088.236	-0.2+4
180 (1\%)	,.	Milp	$148 \cdot 69$		- $1090 \cdot 899$	- 1091385°	41i
16		Emherdidel at Khalghait	149*ヶ̄	",	-1119887	-1120.197	-0.310

TABLE 3.--Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling-(contd.).

Discrepancies between the old and new heights of bench-marks,

Bench-marks of the original levelling that were connected during the revisionary oDerations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
No.	Degree sheet	Description		Date of original levelling	$\begin{gathered} \text { From } \\ \text { published } \\ \text { lieights } \end{gathered}$	$\begin{gathered} \text { From } \\ \text { revision } \\ \text { I929-31 (un } \\ \text { adjusted) } \end{gathered}$	
			miles		feet	f	feel
(Sehore to Dhülia) old line 34, new 111.-(concld.).							
61 (33)	46 K	Bridge ...	$210 \cdot 95$	$\begin{aligned} & 1877-78 \\ & \& 83.84 \end{aligned}$	$\|-795 \cdot 665\|$	-796.099	-0.434
65 (31)	"	Bridge ...	214.35		- 944:575	- 944.980	-0.405
66 (30)	"	Embedded at Suliabandhara			$-941 \cdot 418$	- 941.868	-0.40
68 (28)	"	Bridge ...	216.21	"	- 886.688	- 887.092	- 0.404
69 (27)	"	Bridge	216.93	",	- 939570	- 939.948	-0.978
75 (22)	"	Mile \ldots	221-64	"	-1080.437	- 1080.718	-0.281
$79(20)$	\cdots	Embedded at Shirpur	224.75	",	-1134.858	-1135.300	-0442
8:3 (19)	,	Bridge	226.98	"	-1118.676	-1119.260	-0.084
96 (1S)	"	Emberlded at Dabasi	228.70	,	-1127.515	-1127849	-0334
95 (15)		Culvert ...	233.66	"	- $1049 \cdot 098$	- 1049'456	-0.359
98(13)		Bridge	235.64.	"	-1001.061	-1001:356	-0295 -0238
103 ${ }_{7}$ (9)	"	Bridge ...	$239 \cdot 80$ $241 \cdot 80$	"	1884.083 $-\quad 799376$	- ${ }_{-1848336}^{-799.558}$	- $\begin{aligned} & -0208 \\ & -0.182 \\ & -0.108\end{aligned}$
-	".	Bridge Step	$241 \cdot 80$ $243 \cdot 04$,	$\begin{array}{r}-799376 \\ -804.835 \\ \hline\end{array}$		-0.170
6	".	Embedded at Sangir	$243 \cdot 06$	"	- 803440	- 803.614	- 0114
4	"	Bridge	244.05	",	- 8433637	- 843.802	- 0.165
$\stackrel{3}{107}$	"	Bridge	244.95	",	- 841.081	- $841 \cdot 235$	-
107 (2)	"	Bridge	24600	"	- 819.909	- 8200090	-0.181 +0.006 1000
109 (1)		Mile	247.00	"	- $798 \cdot 407$	- 7988801	1+0.006
150)(4.7)	46 L	Culvert	$248 \cdot 53$		- 762528	- 762.628	-0.100
81	- ${ }^{\text {a }}$	Mile	$254 \cdot 06$	"	- $770 \cdot 744$	$4-770 \cdot 805$	- ${ }^{\text {- }}$ - 0.104
$157(80)$		Emberlded at Dhiulia	254.53	"	-774.604	4-774708	
$158(79)$		Bridge ... S. B M. at Dhūlia	254 250 256	19009-10	- $770 \cdot 212$	- $770 \cdot 300$	-
107	i	S. B M. at Dhūlia	$255 \cdot 66$	1909-10	- 759.876	\|-759.433	-0037
(Jhansi to Bina) old line 63B, new 109.							
51	54 K	S B M at Jhãnsi	0.00	1906-07	$0 \cdot 000$	$0 \quad 0000$	0 0.000
112	,.,	Stone flooring	$0 \cdot 42$	1921-22	- 16.25 h	6- 16255	5 + 0 0001
113		Well ...	0.50		- 17067	$7-\quad 17066$	6 + 0 +0007
114	"	Rock in situ	1.28	",	- 53.945	$5-53.952$	2-000
116		Culvert	$3 \cdot 76$		- 24:570	- 24.567	$7{ }^{+}+0003$
117	"	Rock in situ	3.94		- 29.004	4- 29.007	- 00014
120		Rock in situ $\quad .$.	$5 \cdot 97$		+ 22343	$3+22.357$	
123	"	Interred at Simrabñiri	9.99		1.876 $-\quad 12.96$	-	-0.020
124 126	"'	Culvert Kock in sit	12.04	"	+ 12.964	$4+\quad 12.944$	[${ }^{-1}+0.025$
127	".	Rock in situ Rock in situ	12.67 13.38	"	$+\quad 44.450$ $+\quad 71.592$	+ $+\quad 44.476$	6 +0.034

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
			miles		feet	fect	feet
(Jhānsi to B̄̄na) old line 63B, new 109-(concld.).							
128	54 K	Rock in situ	13.95	1921-22	+ 61.104	+ 61.130	+ 0.026
129		Stone pillar	14.50		$+61450$	$+61 \% 62$	+ 0012
141	"	Bridge	32.92		+ 135.534	$+135.609$	$+0.075$
142	"	Rock in situ...	34:53		+187.345	$+187 \cdot 445$	+ 0.100
143		Boulder	35.80		+232.535	+ 232656	+ $0 \cdot 121$
36	54 L	Interred at M.S. Jhīnsi 36	37.93	",	$+236.474$	+ $236 \cdot 604$	+0130
37 38		Rock in situ	$42 \cdot 11$,	+239.837	$+240.008$	+0.171
38	"	Rock in situ...	44.82	",	+219.414	+ 219.555	+ 0141
38 40	"	Rock in situ...	46.47	..	+243.462	+ $243 \cdot 608$	+ 01146
40 41 4	"	Bridge	$47 \cdot 17$,	+ 237.513	+ 237650	+ 0.137
41	"	Interred at M.S. Jhānsi 46	48.02	,	+252.988	+ 253123	+ 0135
42	"	Rock in situ	49.44	"	+ $259 \cdot 828$	+ 259957	+ 0.129
43	"	Rock in situ	50.61	.	+ 267.597	+ 267719	+ 0.122
44	"	Bridge	50.90	,	$+256 \cdot 160$	+ 256279	+0.119
45 46	"	Rock in situ .	$51 \cdot 97$,.	+264.147	+ 264.258	+ 0.111
46 47	"	Rock in situ	53'39	,	$+276 \cdot 947$	$1277 \cdot 053$	+ 0.106
48	"	Rock in situ	54.42	,	+274306	+ 27×405	+ 0.099
49	"	Rock	$55^{\circ} 53$	"	+ $324 \cdot 256$	+ $324: 354$	+ 0.098
50	""	Interred at M.S. Jhānsi 56 Police hospital	58.07	,	+ 312.749	+ $312 \cdot 840$	+ 0.091
51	"	Municipal	5876	"	+321.140	+ 321232	+0.092 +0.098 +0.
52	"	Police station	59.03 59	"	+322.010 +324.572	+32108 $+32 \cdot 69$	+0.098 +0.097
53	"	Temple	59111		+325.578	+ $325 \% 73$	$+0.095$
18	,	Embedded at Bina	10117	1898-99	$+503.741$	$+503 \cdot 741$	0.000
(Gwalior to Jhānsi) old line 63A, new 109A.							
31	54 J	S.B.M. at Gwalior	0.00	1905-06	$0 \cdot 000$	0.000	$0 \cdot 000$
34		Embedded at Sithauli R.S.	$4 \cdot 47$	1906-07	+ 4.404	+ $4 \cdot 102$	-0002
4 9	54 K	Embedded at Antri R.S.	$15 \cdot 16$	-	+ 99.018	+ 99132	+ 0.114
10	54 K	Ry. platform	25.55	,	- 53.908	- 54:024	-0.116
20	"	Embedded at Dabra R S.	25*61		- 57656 i	- 57.716	- 0.060
21	,	Ry. platform	$38 \cdot 62$		- 46.293	4635 ti	- 0.0063
22	"	Embedded at Sonāgir R.S.	38.66	"	- 51.019	- 51.080	-0.061
26	"	Ry. platform	38.69	,	- 46.328	- $46 \cdot 395$	-0.067
47	"'	Ry. platform	$46 \cdot 19$,	+ 128.639	+ $128 \cdot 615$	-0.024
43	"	Stone flooring	62:36		+138'432	+ 138:334	-0.008
44	"	Ry. platform	62\%95		+117484	+ $117 \cdot 449$	- 0.025
48	"	Ry. platform	63.06		+ 117448	+ 117:344	-0.104
49	"	Stone flooring	63.49		+ 123.627	+ 123848	-0.084
60	",	Stone step ...	64.08		+ 114:332	+ 111282	- $0 \cdot 100$
61	",	Stone step ...	64.12		+114281	+ 114186	- 0.095
	"	S.B.M. at Jhānsi	64.16		+115.079	+ 114985	-0.09.

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Hench-murks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
			miles		feet	feet	f feet
(Tinpahār to P̄̀rpainti) old line 74M.							
124 (55)	72 P	Wall	0.00	1929-30	0.000	0.000	0.000
$\left.\begin{array}{r} 125(65) \\ (54) \end{array} \right\rvert\,$,.	Masonry pillar	0.01	,.	+ 5.382	$+5.343$	-0.039
208	720	Bridge	0.67	.	- 9.604	- 9.574	+0.030
$\because 09$.,	Bridge	$1 \cdot 19$..	- 3.622	- 3.561	+0.061
$\because 10$..	Bridge .	1.89	,.	+ 7.951	+ 8.053	+ 0.102
211	"	Bridge	$4 \cdot 24$		+ 7.541	+ 7.736	+0.193
212	.,	Masonry pillar	5.98		- 2.927	- $\quad 2.699$	+ 0.238
213	..	Bridge ...	7.98	",	- 16.182	- 15.869	+ 0.313
21.4	.	Bridge	10.41	".	- 1.068	- 0.753	+ 0.315
215	..	Bridge ...	$12 \cdot 47$.	- 8.520	- 8.144	+ 0.376
216	..	Masonry pilliur	14.66		- 10.809	- 10.429	+ 0.380
217	..	Bridge ...	$15 \cdot 17$	$\stackrel{ }{\prime}$	- 16.467	- 16.065	+ 0.402
218	..	Masonry pilliu1	18.42	.	$+16.634$	+ 17.208	+0.574
219	.,	Bridge	21.27		- 9.531	- 8.851	+ 0.680
220	.	Ry. platform	23.38	.	+ 2.541	$+\quad 3 \cdot 326$ $+\quad 3802$	+ 0.788
221	-	Masonry pillar	$23 \cdot 43$		+ 3.013	+ $3 \cdot 802$	+0.789 +0.790 +0.90
222 223	"	Ry. platform Bridge	23.48 25.32	..	$+\quad 2.460$ $-\quad 6.069$	$+\quad 3.250$ $+\quad 5.152$	+0.790 +0.917 +
223 234	\cdots	Bridge Bridge	$25 \cdot 32$ $30 \cdot 60$ 3	,	$\begin{array}{r}+\quad 6.069 \\ -\quad 5.011 \\ \hline\end{array}$	- $5 \cdot 162$	+0.919 +1.134
225	"	Masonry pillar	32.83		+ 1.207	+ $2 \cdot 440$	+ 1.233
${ }^{226}$.	Ry. platform	38.05	.,	+ 39862	+ 41.265	+1.403
227	.	Flooring	$38 \cdot 11$,	+ $+41 \cdot 143$	+42.545 +47.270	+1.402 +1.403
228		Masonry pillar	$38 \cdot 16$		+ 45.867	+ 47.270	$+1.403$
(Pirpainti to Purnea) old line 74M, and 73, new 74P.							
228	720	Masonry pillar	0.00	1929-30	0.000	0.000	0.000
297 (6t)	..	Step	2.30		- 48.949	- 48.962	-0.013
2:30) (6;)	..	Masonry pillur	2.54		- 59.831	- 59.823	+0.008 -1.332
51	..	Mileplate	20.90	1871-72	- 49.391	- 50.723	-1.332
18	.	Mileplate	22.90	..	$\begin{array}{r}-47.495 \\ -49.738 \\ \hline\end{array}$	$-49 \cdot 183$ $-\quad 51.107$	-1.18 -1.369
18 178	\cdots	Mileplate	23.91	,,	- 49.738	- 51.107	-0.508
:37		Mileplate	30.00।	"	- 4 - 41.151	- 42.598	-1.4i
35		Mileplate	31.02		- 42.549	- 42.996	- $0 \cdot 4+7$
34		Mileplate	32.03		- 40.916	- 40.411	+0.50,
: 4		Miloplate	33.03		- 42.128	- 42.077	+0.0.012
27		Mileplate $\quad .$.	:38.46	$\ddot{.}$	- 38.834	- 38.906	-0.0.49
1.3		Embedded at Purnea	299.29		- 41.602	$-41 \cdot 153$	$+0.4+9$ +0.45
177	.	S.B.M. at Purnea	39.69	1909-10	- 39.012	- 38.557	+ 0.40

TABLE 3.-Revision levelling-(concld.).
Discrepancies between the old and new heights of bench-marks.

TABLE 4.-List of triangulation stations connected by spirit-levelling season 1929-31.

Name of station \begin{tabular}{cccc}
Height above

mean sea-level

Difference
\end{tabular}\quad Remaris

Khānpisura Meridional Series

Buldäna Series

Kati (Kiti			S.	959.943	966	$+6$	Upper mark-stone.
	$=$,	"				
Lat.	20	50	$10 \cdot 02$				
Long.	76	16	52-35				
Khandoba				1,033 $\cdot 112$	1,037	$+4$	Upper mark-stone.
	\bigcirc	,	"				
Lat.	20	45	45•76				
Long.	76	34	$46 \cdot 42$				

Ashta Series

Baroli			H.S. 1,878-389	1,876	-2	Upper mark-stone.
	\%	,	"			
Lat.	22	57	53.59			
Long.	76	17	38.05			

Budhon Meridional Series

Maharājpur \quad H.S. $1,022 \cdot 330 \quad 1,015 \quad-7 \quad$| Ground mark (on rook in |
| :---: |
| gitu. $)$ |

Lat.	25	53	54.44
Long.	78	14	13.09

No. 4 Dete in C. I. and U. P.
No. 5 Dett. (list. Leveller) in Punjáb and Rājputãila.

No. 5 Dett. (2nd. Leveller) in Punjab and Rājputãna.

No. 6 Dett. (lst. Luveller) in Fihihar \& Orimsa

TABLE 4.-List of triangulation stations connected by spirit-levelling, season 1930-31.-(concld.).

Name of station	Height above mean sea-level		$\begin{gathered} \text { Difference } \\ \text { (Trian. - Lev.) } \end{gathered}$	Rimarife
	Spiritlevelling	Triangulation		
	feet	feet	feet	

Great Salween Series

East Coast Series
Cuttack (Bārabāti) H.S. $133.323 \quad 132 \quad-1$ Top mark-stone
$\begin{array}{lllll}\text { Lat. } & 20^{\circ} & 29^{\prime \prime} & 00^{\prime \prime} 68\end{array}$
Long. $\quad \begin{array}{llll}85 & 52 & 01.43\end{array}$

Chapter VIII

THE MAGNETIC SURVEY

by Captain G. Bomford, r.e.

1. Summary.-In addition to the usual programme of observations at the Dehra Dūn observatory (and at Alībāg under the Director-General of Observatories), a field detachment occupied 37 repeat stations, covering about half the area of the magnetic survej.

The observations of horizontal force made at Dehra Dūn during 1920-30 have been reconsidered and final values are now published.
2. Dehra Dun Observatory, 1930. -The usual programme was carried out consisting of a continuous magnetographic record of declination, horizontal force and vertical force, daily observations of dip, and bi-weekly observations of declination and horizontal force. Five severe magnetic storms were recorded during the year, on March 12th, June 16th, Sept. 18th, Oct. 17 th and Dec. 3rd and 4th.

Subsoil water percolated into the passage round the underground magnetograph room between July 29th and Aug. 16th. In the months of October and November 1930, the H. F. and declination clock frequently stopped, causing considerable loss in both traces. The clock was taken out and thoroughly cleaned.

The mean scale values for 1930 for an ordinate of $1 / 25$-inch were:-

Horizontal force	\ldots	$4 \cdot 26$ gammas
Vertical force	\ldots	$9 \cdot 34$ to 10.58 gammas
Declination	\ldots	$1 \cdot 03$ minutes.

The mean temperature for the year was $27^{\circ} 0 \mathrm{C}$ with maximum and minimum values of $27^{\circ} \cdot 5 \mathrm{C}$ and $26^{\circ} \cdot 1 \mathrm{C}$, the temperature of reduction being $27^{\circ} 0 \mathrm{C}$.

Table 1 shows the mean monthly values of the magnetic collimation, the distribution constants $P_{1 \cdot 2}$ and $P_{2 \cdot 3}$, the accepted value of $\log \left(1+P / r^{2}+Q / r^{4}\right)^{-1}$, and the values of m for magnet No. 17. Table 2 gives the mean monthly observed values of the declination and horizontal force hase-lines. Table 3 shows the mean monthly values of the elements for 1929 and 1930 , and the annual change for the period. The mean hourly deviations from the monthly means are given in Tables 4 to 7. Table 8 gives the classification of the magnetic character of all days in 1930. The

symbols $\mathrm{C}, \mathrm{S}, \mathrm{M}, \mathrm{G}$ and VG there used are those which have been employed in all the Survey of India records. They correspond with the International (De Bilt) classification somewhat as follows:-

0 De Bilt = C and part of S.
1 De Bilt = Part of S, and M.
2 De Bilt = G and VG.
3. Field repeat stations, 1930-31.-A field detachment was formed under Mr. Shyam Narain, b.sc., who observed declination, force and dip at all the repeat stations which are dependent only on the Dehra Dūn and Alibāg observatories. It had been hoped to reopen the Kodaikānal and Toungoo (Burma) observatories during 1931-32 and to observe the remaining repeat stations that year, but financial stringency has postponed the programme, and its early completion appears to be so doubtful that results for the north of India are now pullished without waiting for the completion of the rest of the survey.

In addition to Mr. Shyam Narain the detachment consisted of 1 recorder and 8 khalāsis. Work started at Lahore on Oct. 25th 1930, and was completed at Käthgodām on March 24th, 1931. The instruments used were magnetometer No. 4 and dip circle No. 136.

The instruments worked satisfactorily and the usual degree of accuracy was maintained, except that the dip needles showed very wide variations, presumably on account of imperfection in their pivots, although no defect has been definitely detected. The dip observations can only be relied on as correct to 10^{\prime}. 'Table 9 gives the monthly mean values of m and $\log \left(1+P / r^{2}+Q / r^{4}\right)^{-1}$ for magnetometer No. 4. They were satisfactorily constant. Log $\pi^{2} K$ was determined before the field season.

The results of comparisons with the standard instruments at Dehra Dūn and Alibag are given in Table 10. The accepted corrections to the field ralues of declination are $-0 \cdot 4$, to H.F. $+9 \gamma$, and to dip nil. The reason for applying no correction to dip is the wide variation in the differences between needles at the different field stations: the instrumental error was clearly not constant.

The field observations have been computed and reduced to epoch $1931^{\circ} 0$ during recess, under the supervision of Mr. B. L. Gulatee, m.a. The Meteorologist, Bombay, who is in charge of the Alibag observatory, has supplied data from which, in conjunction with the Dehra Dinn data, the diurnal variation and perturbation have been calculated at the required hours. The annual changes and normal values of the elements at Alibigg have been taken from curves (Plate XX) ploted from monthly mean values supplied by the Meteorologist, Bombay. Similar curves for Dehra Dim are given in Plate XXI. The results at the repeat stations are given in Tables 11 to 14 . The values of the elements at the field stations of the
original survey have been brought up to date by means of them values of the annual change and are shown by contour lines on Plates XXIV to XXVII.
4. Dehra Dun Observatory, 1920-30.-The reduction of observations of horizontal force involves the adoption of accepted values of the moment and distribution factors of the magnet, which camot always be decided until a considerable number of further observations have been made. It is consequently necessary to reconsider past work from time to time, and to publish final values. The period from the beginning of the survey until 1920 is corered by Records Volume No. XIX. The present report deals with the Dehra Dūn observatory between 1920 and 1930. Its preparation has been supervised by Mr. B.L. Gulatee, m.a.

At Dehra Dūn, the observations of H.F. have been complicated by an appearance of irregular increase in the moment of the magnet, and by an apparent annual change of moment from summer to winter (see Geodetic Report Vol. VI, page 10). The latter has been shown to be due to a change (or error) in the accepted temperature coefficient, but no satisfactory explanation has been found for the apparent increases of m.

The magnetic moment of the magnet $\left(m_{l}\right)$ at any temperature $t^{\circ} \mathrm{C}$ is related to its moment at $0^{\circ} \mathrm{C}$ by the formula-

$$
m_{t}=m_{0}\left(1-a t-\beta t^{2}\right) .
$$

The values of a and β obtained at Kew Observatory in Dec. 1901 were $a=+36.6 \times 10^{-6}, \beta=+9.5 \times 10^{-7}$.

The following table shows the values which Mr. Gulatee has now obtained:-

Fach of the above measures depends on 5 sets of deflections measured at three temperatures viz., about $10^{\circ}, 34^{\circ}$ and $47^{\circ} \mathrm{C}$. The last column is alded to show the temperature coefficient at $23 \mathrm{f}^{\circ} \mathrm{C}$ the normal annual mean temperature. The value given by the 1901 values of " and β is $41 \cdot$, so that the reality of the change is

Log. $\pi^{2} \mathrm{~K}$ of Magnet No, 17

Magnetic Moment of

Magnet No. 17

807-30 \qquad

quite apparent. The acceptance of the above mean values of a and β results in the disappearance of the decrease of moment from winter to summer, but on the average produces a small variation of opposite sense. It is possible that the values now obtained are a little too high.

The moment of inertia of magnet No. 17 has been twice re-determined during the present year. Plate XXII shows the variation of $\log \pi^{2} K$ since 1902 (making assumptions regarding the moment of the standard gilt bar as described in Geodetic Report Vol. VI, page 10), and the smooth curve shows the values that are now accepted for 1920-30. In the earlier years the curve hardly differs appreciably from the values accepted in Records Vol. XIX. The 1927 value of $\log \pi^{2} K$ is considered unreliable.

The values obtained for the factor $\left(1+P / r^{2}+Q / r^{-1}\right)^{-1}$ have raried widely from year to year (see Table 15). The factor is nearly unity, and so long as m remains more or less unchanged, it is dear that such wide variations cannot be real. A mean value of $\dot{I} \cdot 994] 5$ has therefore been accepted for its \log throughout. Table 15 shows the observed values of $\log \left(1+P / r^{2}+Q / r^{4}\right)^{-1}$, the accepted values of $\log \pi^{2} K$, and the values of m which result, using the new temperature constants. Similar information is given for magnetometer No. 5 , which is used as a check. Its m shows a steady fall, $\log \left(1+\mathrm{P} / \mathrm{r}^{2}+\mathrm{Q} / \mathrm{r}^{1}\right)^{-1}$ is reasonably constant, and the results should be reliable. But only comparatively few observations have hitherto heen made with it.

The annual mean values of m of No. 17 are also shown in Plate XXIII, where it is noticeable that the irrcgular increases of m are not corrected. The observers' initials are entered on the chart. Two values are given in 1919, siner there was a sudden fall in the month of October. The observer S.D. was experienced, and his results before and after the fall were consistent inter se. There is thus reason to suppose the fall to be real, especially as it is confirmed by the observer A.M. in 1920. Two values are also given in 1922, there being a change of observer, but the observations of J.L.S. were so irregular as to be of little value.

For calculating H three courses are possible-
(1) To accept the monthly mean values of m as obsirved.
(2) To accept the ammual mean values of m.
(3) To accept the values of m as given by some smooth curve such as that shown on Plate XXПI.

Course (1) has the advantage that ignorance of the true temperature coefficient will not introduce a fallacious anmual variation of H. It has the disadvantage that a single month's observation may not give a very good value of m, but it is helieved that systematic errors are far more serious than such casual errors as may be present in a monthly mean.

Course (3) has the advantage that the values of m used (or at any rate their variations from year to year) may be expected to he more correct than those given by other courses, but this does not necessarily result in better values of H. If all the error was known to lie in the vibration experiment, (3) would be the right course, but the great variations in the observed values of the distribution factor indicate that some observers have made systematic errors in the deflection observation also, and it is quite possible that the best cancellation is to be got from the acceptance of each observer's deflection and vibration experiments as they stand. Further, when two observers covering 18 months in 1919-20 have consistently obtainel results $0 \cdot 40$ smaller than two observers in 1926-30 (eonfirmed by a third in 1931), it is right to admit the possibility of the magnet having unintentionally received such treatment is would cause an increase of m.

If observations had been made with the check magurtometpr N o. i in the very irregular years 1919-28, comparison of the anmual mean values of H as given by it and by No. 17 would have been a good guide to the best course. Unfortunately check observations have only been made during the less irregular years $192+-30$. Table 16 shows annual mean values of $H-39,(0) O \gamma$ as given by No. 17 on the three different hypotheses, the annual means according to No o. . and the discrepancies between the two magnetometers. The last line shows that the acceptance of a steadily falling curve has resulted in distinctly worse agreement between the instruments than is given by either of the other two courses.

Table 17 shows the final values of m of No. 17 from month to month for 1920 to 1930 , and Table 18 shows the values of H. ralculater in three ways as above. The first value, H_{1}, which results from the acceptance of the observed monthly mean m, is considered the most reliable, and this course is being followed heuceforward.

TABLE 1.—Mean values of the constants of Magnetometer No. 17 in 1930.

Month	Declination constants	H. F. constants				
	Mean magnetic collimation	Distribution factors			Mean values of m	
		$\mathrm{P}_{1.2}$	P_{23}	Accepted value of $\log \left(1+P / r^{2}+Q / r^{4}\right)^{-1}$	$\begin{gathered} \text { Monthly } \\ \text { means } \end{gathered}$	Accepted m
		cm^{2}	cm^{2}		C. G. S.	C. G. S.
January	- 619	$5 \cdot 91$	$7 \cdot 75$		806.87	806.47
February	-6 21	583	7.73		6.97	${ }^{6 \cdot 97}$
March	- 614	602	6 52		7.17	$7 \cdot 17$
April	- 617	5.80	$8 \cdot 04$	$\stackrel{8}{30}$	7.09 7.16	7.09 7
May	-617	6.01	7.76	$\stackrel{3}{0}$	$7 \cdot 16$ 7.28	7.16
June	-¢	5.77	7.92	S	7.28	$7 \cdot 28$
July	- 618	5.84	7.86 8.09	10	6.97	6.47
August ...	- 615	5.80	8.09	$\stackrel{7}{5}$	$7 \cdot 05$	7.05
September	- 619	$5 \cdot 87$	$8 \cdot 10$	\%	$7 \cdot 05$	7.05
October	- 612	$6 \cdot 06$	$6 \cdot 42$		7.07	7.07
November	-613	$6 \cdot 03$	$6 \cdot 54$		$7 \cdot 10$	$7 \cdot 10$
December	-614	$6 \cdot 06$	$6 \cdot 67$		806.99	806.99

TABLE 2.-Base-line values of Magnetographs at Dehra Dūn in 1930 from Magnet No. 17 .

N. B.--T he above values have been accepted.
a Up to 10^{h} on 10th.
d. Up to 10^{h} on 27 th
b. Up to $10^{\text {h }}$ on 24 ch .
e. From 11^{h} on 27 th.
c From 11^{h} on 34th.
f. Up to 10^{h} on 21 st .
g. From 11^{h} on 21st.

TABLE 3.-Monthly mean values of the Magnetic elements and their annual changes, Dehra Dūn, 1929-30.

Monit	Horizontal force 0.32000 C.G.S. +			$\begin{gathered} \text { Declination } \\ E 1^{\circ}+ \end{gathered}$			${\underset{N i p}{\text { Dip }}+}^{45^{\circ}}$			Vertical force 0:33000 C.G.S. +		
	1929	1930					1929	1930		1929	1930	$\begin{aligned} & \text { Wa } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$
	γ	γ	γ			,			,)	γ	$\boldsymbol{\gamma}$
January	941	952	+ 11	$17 \cdot 0$	136	-34	33•1	$32 \cdot 8$	-0.3	576	586	$+10$
February	961	958	-3	$17 \cdot 0$	129	$-4 \cdot 1$	33.0	33%	$+0 \%$	590	610	$+20$
March	945	963	$+18$	169	125	-44	33.8	33.3	-0.5	590	608	$+18$
April	951	954	+ 3	11:3	$12 \cdot 5$	-38	$33 \cdot 8$:34'9	$+1 \cdot 1$	603	630	$+27$
May	953	963	$+10$	16%	11.9	$-4 \cdot]$	$33 \cdot 9$:34:3	$+0.4$	607	627	+ 20
June	949	964	$+15$	153	11\%	-3.7	134:3	344	+0.1	62:3	630	$+7$
July	943	962	+19	$15 \cdot 1$	$2 \cdot 1$	-3.0	46	$34: 3$	-0.3	62:3	626	$+3$
August	*	972		$14 \cdot 8$	11.6	$-3 \cdots 2$	17	347	$0 \cdot 0$	*	644	\ldots
September	*	957		145	11:5	-3.0	$3+1$	34.5	+0.4	*	625	
October	940	956	$+16$	145	115	-30	34.0	363	$+2 \cdot 3$	605	659	+54
November	937	976	+39		109	-35	33.9	$35 \cdot 5$	+1\%	601	664	+63
December	935	978	+38		103	$-3 \cdot 8$	$33 \cdot 5$	35:5	$+2 \cdot 0$	589	662	+ 73
Means	946	963	+17	$15 \cdot 5$	119	-36	$33 \cdot 9$	34.5	+06	601	631	+30

$\gamma=0.00001 \mathrm{C} . \mathrm{G} . \mathrm{S}$.

* Magnetometer No. 17 was sent to M. I. O. for repairs.
TABLE 4.-Declination at Dehrı INй in 19.30 (determined from 5 selected quiet days in each munth).

[^26]TABLE 5.-forizontal force at Dehra 1 \#̈n in 1930 (determined from $\overline{3}$ selected quiet days in each month).

$y=0.00001$ C.G.S.
Note.-The mean horizontal force for any hour in a month may he obtained by applying the hourly deviation for that hour with the sigu given, to the monthly mean. Figures in thick type indicate the marimum and minimum ralues of the hourly deviation.
TABLE 6.-Vertial fince at Dehra Düu in 1930 (determined tirom 5 selected quiet days in each month).

Month		$\begin{aligned} & \text { Monthly } \\ & \text { mean } \end{aligned}$	Hourly meay minux monthly mean																								
			Mid										10	11	旁	13				17		19	20	21			Mid
		y	γ	γ	y	γ	γ	γ	r	γ	γ	γ	r	γ	,	${ }^{\gamma}$		γ	γ	γ	y	γ	γ	γ	γ	γ	γ
Januery		33586	0	-1	0	-1	-1	-1	-1	+ 1	+3	+3	-	6	-3	- 2		-1	+3	+4	+3	+1	+2	+2	+2	+3	+3
February		610	-1	-1	-1	-1	-1	-1	-1	- 1	0	0	- 1	0	- 2	- 3		-1	-1	0	+2	+2	+1	+2	+1	+2	+2
March		608	+3	+4	+	+	+3	+4	+6	+ 8	+7	+4	- 3	-12	-9	-8		-2	+1	0	-1	-1	-1	0	0	0	+1
October		659	+4	+2	+3	+2	+1	+1	+2	+ 6	+7	0	-8	-17	-18		${ }^{-6}$	0	+1	+1	0	+4	+5	+4	+5	+5	+6
November		664	+1	+2	0	0		0	0	+ 1	+3	+3	- 1	-2	-2	0	+1	0	0	+1	+1	0	0	+1	+1	0	0
December		662	+3	+2	+1	0	0	0	0		+1		-3				+1			0	-2	-2	-2	-2	-2	-2	-2
Winter Means	...	33632	+2	+1	+1	+1		+1	+1	+ 2	+4	+2	- 3	- 7	-6	-4	-3		+1	+1	+1	+1	+1	+1	+1	11	+2
April		33030	+6	+7	+5	+5	+5	+5	+7	+ 7	+5	-3	-14		-18	-13	-7	-4	0	0	+2	+2	+3	+4	+4	+5	+4
may		627	+2	+2	+2	+1	+1	+3	+5	+	-1	-6	-13	-13	-8		-1	+2	+3	+4	+2	+1	+2	+3	+3	+5	+5
Juna	.	630	0	-2	-1	-1	${ }^{-3}$	+1	+ 5		-1	-7'	'-12		-9	- 7	-3	+2	+	+5	+5	+4	+4	+4	+4	+5	+4
Jaly	...	626	+3	+2	+1	+2	+2	+3	+7	+	0	-1	-	-9	-9		-6	-3	+2	+3	+3	+3	+2	+3	+4	+3	+3
Ausust		54	+3	+3	+4	+5	+4	+6	+7	+ 5	+1	-2	-9	-8	- 5		-2	-2	0	-1	-2	-2	-2	-1	6	+1	+2
September		625		+7	+7	+7	+6	+6		+10	+7	+2	-6	- 7	-12	-7	-6	-4	-1	-1	-2	-2	-2	-3	-2	-3	-4

TABLE 7.-Dip at Dehra Dün in 1930 (determined from 5 selected quiet days in each month)

[^27]| Dates | January | Fetruary | March | A pril | May | June | July | August | September | October | November | December |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| C
 S
 M
 GG
 VG | $\begin{array}{r}9 \\ 15 \\ \hline 5 \\ \hline 2 \\ \hline\end{array}$ | | 10 5 12 12 1 1 | 1 11 8 7 | $\begin{array}{r}6 \\ 8 \\ 14 \\ \hline\end{array}$ | 6 10 10 10 1 1 | 8 11 7 7 | $\begin{array}{r}9 \\ 9 \\ 10 \\ \hline\end{array}$ | 8 12 12 6 3 1 | $\begin{array}{r}7 \\ \hline 6 \\ 13 \\ 4 \\ 4 \\ \hline\end{array}$ | 14 5 6 1 | $\begin{array}{r} 12 \\ 9 \\ 9 \\ \boxed{2} \end{array}$ |

TABLE 9.-Mean values of the constants of Magnetometer No. 4 in 1930-31.

Month	Declination constants	H. F. constants				
	Mean magnetic collimation	Distribution factors			Mean values of m	
		$\mathbf{P}_{1.2}$	$\mathrm{P}_{2,3}$	Accepted value of $\log \left(1+P / r^{2}+Q / \mathbf{r}^{4}\right)^{-1}$	Monthly means	$\underset{m}{\text { Accepted }}$
	, "	cm^{2}	cm^{2}		C. G. S.	C. G. S.
October ...	-2 14	7-55	$8 \cdot 18$	$\stackrel{+}{0}$	865.76	$865 \cdot 76$
November	-2 14	7.51	$8 \cdot 48$	$\stackrel{\square}{60}$. 94	- 94
December	-2 15	$7 \cdot 57$	$8 \cdot 57$?	.77	. 77
January ...	-2 10	7. 46	$8 \cdot 55$	$\underset{+}{\ddagger}$	$\cdot 70$	- 70
February...	-2 11	7.4.4	$8 \cdot 70$	0	. 65	-65
March ...	-142	7.58	8.75	$\stackrel{4}{8}$	-70	. 70
April	$7 \cdot 37$	$8 \cdot 85$	$\stackrel{-}{-}$	$865 \cdot 72$	$865 \cdot 72$

TABLE 10.-Comparison between observatory and field constants.

	Dehra Dūn minus field Oct. 1930	Dehra Dūn minus field March 1931	$\begin{gathered} \text { Alibigg } \\ \text { minus } \\ \text { field } \\ \text { Jan. } 1931 \end{gathered}$
	,	,	,
Declination	$-0 \cdot 3$	-0.4	$+1.9$
Horizontal force	$+9 \gamma$	+ 8γ	$+41 \gamma$
Dip	- $3 \cdot 0$	$-4 \cdot 7$	$-2 \cdot 0$

$\gamma=0.00001 \mathrm{C} . \mathrm{G} . \mathrm{S}$.
TABLE 11.-The values of Leclination reduced to epochs $1909 \cdot 0,1920 \cdot 0$ and $1931 \cdot()$ and the Annual changes

$\begin{aligned} & \text { in } \\ & \dot{n} \dot{\sim} \dot{\sim} \\ & 1 \end{aligned}$	$\begin{aligned} & -\infty 0 \\ & \dot{\infty} \dot{\infty} \dot{\psi} \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{ccc} 0 & \infty & \infty \\ \dot{+} & \dot{\infty} & \dot{\infty} \\ 1 & 1 & 1 \end{array}$	$\begin{gathered} 1-\infty 1 \\ \dot{\infty} \infty \\ 1 \mid 1 \end{gathered}$	$\begin{array}{cc} \infty & \infty \\ \dot{\infty} \dot{\infty} \\ 1 & 1 \end{array}$	$\begin{aligned} & +0 \\ & \dot{n}+\infty \\ & 1 \\ & 1 \end{aligned} 11$	00 ロ $\dot{\infty} \dot{\boldsymbol{*}}$ 111
		$\begin{aligned} & 0 \text { op } \\ & \dot{q} \dot{\sim} \dot{\sim} \end{aligned}$		$\begin{aligned} & 0 \text { O } \\ & \dot{j} \dot{+} \dot{1} \end{aligned}$	is is is	$\begin{aligned} & \text { N } \\ & \text { in in } \\ & \text { in } \end{aligned}$
111	111	111	111	11	111	111
がが カッカ	$\begin{aligned} & \underset{\sim}{N} \underset{\sim}{N} \\ & \dot{\infty} \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\infty}{\infty} \dot{\infty} \dot{\infty} \end{aligned}$	$\begin{aligned} & \dot{1} \dot{\infty} \dot{N} \\ & \dot{\infty} \dot{x} \end{aligned}$	$\begin{aligned} & \infty \infty \dot{+} \\ & \dot{\infty} \dot{\sim} \dot{+} \end{aligned}$		
1 \｜1	111	111	111	111	111	111
$\begin{aligned} & \text { No } \\ & -\dot{1}-\dot{1} \end{aligned}$	$\begin{gathered} -109 \\ \dot{\sim} \dot{\sim} \end{gathered}$			Fer $\dot{\mathrm{N}} \dot{\mathrm{~N}}$	$\infty 0 \square$ $\dot{\mathrm{N}} \dot{\mathrm{~N}}$	± 100 $\dot{\sim} \dot{\infty}$
111	111	11	111	111	111	111
		$\begin{aligned} & 009 \\ & \text { N } 0 \text { in } \end{aligned}$	$\begin{array}{ll} \infty \\ \infty \\ \infty \\ \dot{\alpha} \\ \hline \end{array}$		$\begin{aligned} & 9101 \\ & 109 \\ & 10 \end{aligned}$	$\begin{aligned} & -\infty \dot{N} \\ & \dot{\infty} \dot{\infty} \dot{+} \end{aligned}$
000	$\begin{aligned} & 00-1 \\ & 1++ \end{aligned}$	$\begin{aligned} & 000 \\ & +++ \end{aligned}$	0	$\underset{1}{1} \underset{1}{1}$	$\begin{aligned} & 000 \\ & 1+1 \end{aligned}$	$\begin{aligned} & 000 \\ & 1+1 \end{aligned}$
$\begin{aligned} & 0 \dot{0} \dot{0} \\ & \dot{-} \dot{0} \dot{0} \end{aligned}$		$\begin{aligned} & 009 \\ & 0.94 \\ & 049 \end{aligned}$			$\begin{aligned} & \infty 00 \\ & \infty \dot{\infty} \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \sigma_{i} \infty \\ & \dot{N} \dot{0} \\ & \dot{\sim} \dot{\theta} \end{aligned}$
$\begin{aligned} & 000 \\ & +1+ \end{aligned}$	$1+r$	$+\underset{+}{-1}+$	$\begin{aligned} & 000 \\ & +1+ \end{aligned}$	000	$\begin{aligned} & 0-0 \\ & 1+-1 \end{aligned}$	$\begin{aligned} & 000 \\ & ++1 \end{aligned}$
$\begin{aligned} & \text { MiN } \\ & \dot{\mathrm{O}} \dot{\mathrm{~N}} \mathrm{O} \end{aligned}$	$\begin{aligned} & 10 \\ & \dot{N} \dot{C} \dot{c} \end{aligned}$	$\dot{N} \dot{N} \dot{N}$			Ni	
$\begin{aligned} & 00-1 \\ & +++ \\ & \hline \end{aligned}$	$\begin{aligned} & O \text { N N } \\ & +++ \end{aligned}$	$\begin{gathered} N+\infty \\ +++ \end{gathered}$	$\begin{aligned} & -1 \\ & +++ \end{aligned}$	$\begin{aligned} & 000 \\ & ++1 \end{aligned}$	$\begin{aligned} & 00 \rightarrow+ \\ & +++ \end{aligned}$	$\begin{aligned} & -1+0 \\ & +++ \end{aligned}$
$\begin{aligned} & \text { Not } \\ & \text { int } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & E-7 \\ & i=4 \end{aligned}$	$\begin{aligned} & 1+\pi \infty \\ & \dot{x} \dot{x} \dot{+} \end{aligned}$	$\begin{array}{lcc} \infty \\ \infty \\ \infty & \times \\ \hline \end{array}$			$\begin{aligned} & 709 \\ & \dot{-1} \dot{8} \dot{8} \end{aligned}$
00	$\begin{aligned} & 00 \\ & 1+ \end{aligned}$	$\begin{aligned} & 000 \\ & +++ \end{aligned}$	$0-10$	FrI	$\begin{aligned} & 000 \\ & 1+1 \end{aligned}$	$\begin{aligned} & 000 \\ & 1+1 \end{aligned}$
－${ }_{0}$	\bigcirc	¢ 0^{6}	$\cdots \infty$		－ros	穴－80\％
$\cdots \sim$	$\rightarrow \infty$		NoN00	$\rightarrow-1$	$\cdots \infty$	$\infty \times \infty$
－	出 ∞	成示年	$\cdots \cdots$	ヘ－\sim_{0}	$\cdots \underset{\sim}{\sim}$	믹
$\begin{aligned} & 800 \\ & 0.00 \\ & 00 \end{aligned}$		$\begin{aligned} & 980 \\ & 080 \\ & 0 \\ & 0 \end{aligned}$			옹웅	옹
\％${ }^{\circ} \mathrm{O}$	으욱웅	¢ ¢ ¢	090	¢985	920	O10 0
		N	－	＋08	今心示	$\cdots \infty$
12N	サ上边	号机	必卡家	－¢100	¢－8	$\cdots \times$
∞ or	$\bigcirc \underset{\sim}{18} 9$	－\％\％	¢ ¢ ¢ ¢ ¢	우구ํ	$\bigcirc 0_{1} \bigcirc_{10} 0$	O19
N Nos	${ }_{0}^{\infty}$ 乐易	10109	$\bigcirc{ }^{-1} 0$	－ 10	－9\％	
武～0	${ }_{\sim}^{\infty} \times$	\％ 19	式足河	号灾	－9\％${ }_{-1}$	哭込
$\begin{aligned} & \text { SH } \end{aligned}$	$\begin{aligned} & \text { 団回 } \\ & \text { 回 } \\ & \text { 回 } \end{aligned}$	$\begin{aligned} & \text { 寻怘 } \\ & \text { 号 } \end{aligned}$	官官		日々	$\stackrel{\leftrightarrow}{\Delta}$
々	ゆ馬け	○○回	ー可式	みひ気	平島吅	じす
¢			1093 10	40.009	1088	¢8\％

$\begin{aligned} & \text { F్ } \\ & \text { Gis. } \end{aligned}$	$\therefore \quad 1+\cdots$	\＃～0 $1++$	$\stackrel{\text { a }}{\substack{\text { a } \\+++++ \\ \hline}}$	gri $1+1$	N	
	－앙요		$\begin{gathered} \text { הNO } \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \text { Pio } \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	がへ	
	$\therefore \operatorname{cosic}_{\substack{\infty \\ 1}}^{\infty}$	$\begin{gathered} \text { M } \\ 1 \\ 1 \\ \hline \end{gathered}$		$\begin{aligned} & 965 \\ & 10 \\ & 10 \end{aligned}$	$\underset{\sim}{\infty} \underset{\sim}{\circ} \underset{\sim}{7}$	$\begin{aligned} & 0000 \\ & 1+ \end{aligned}$
骨	\checkmark せis	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{1}$	$$		$\underset{1}{\infty} \underset{\sim}{\infty} \underset{\sim}{\circ}$	$\begin{aligned} & \infty, 00 \\ & 111 \end{aligned}$
$\begin{aligned} & \text { 齿步 } \\ & \text { 号 } \end{aligned}$						
					$\begin{aligned} & \text { Rop } \\ & \text { ond } \\ & \text { nN } \\ & \rightarrow \sim N \end{aligned}$	
	巡	앙유융	우웅융	ㅇNN윤	안육	8\％\％\％
			$\begin{aligned} & 888 \\ & -80 \\ & -80 \\ & 8 \mathrm{EO} \end{aligned}$	－ ゅ～ロ か゚号	भヶ응 N ホ（ がロボ	$\begin{aligned} & \text { ongo } \\ & \text { on } \\ & \text { on } \\ & \text { NiN } \end{aligned}$
	－思多 칙욱品認			品曻品品 ${ }^{\circ}$ 		$\begin{aligned} & \text { 우영 } \\ & \infty+ \pm \\ & \text { BN } \end{aligned}$
沯	馬上呙	$\begin{aligned} & E=B \\ & A \\ & A \end{aligned}$			$\begin{aligned} & B \\ & A \\ & A \end{aligned}$	
	っから あ゙品品	$\begin{aligned} & 904 \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & \text { 多最年 } \end{aligned}$	$\begin{aligned} & 0 \text { 四 } \\ & \text { 等志 } \end{aligned}$		$\begin{aligned} & 40, \\ & \% \% \% \end{aligned}$

$\begin{aligned} & 0.0 \\ & \substack{0 \\ +++\infty} \end{aligned}$		$\begin{aligned} & 2087 \\ & +++ \end{aligned}$		$\underset{\substack{e \\+\\+++ \\ \hline}}{ }$	$\begin{aligned} & \stackrel{\mu}{\circ} \mathrm{m} \\ & +++ \end{aligned}$	O N + ++ +
$\begin{aligned} & \text { roo } \\ & 1+ \end{aligned}$			$\begin{aligned} & \infty \infty-1 \\ & 1+1 \end{aligned}$	$\begin{aligned} & \infty \underset{7}{\infty} \\ & +++ \end{aligned}$	$\begin{aligned} & \sigma \text { 留 } \\ & +11 \end{aligned}$	$\begin{aligned} & 0 \underset{\sim}{ \pm} \infty \\ & 1 \\ & 1+ \end{aligned}$
$\begin{aligned} & \text { N© } 0 \\ & +++ \end{aligned}$	® +10 +10	$\underset{\sim}{*} \times$	$\begin{aligned} & \text { Nos N } \\ & 1++ \end{aligned}$	7% ++ +	$\stackrel{2}{2}+1$	$+\infty$ $11+$
7100 111	N＊	－	$\begin{array}{ll} -7 & 00 \\ 1 & 1 \end{array}$	$\begin{aligned} & 7-18 \\ & 1++ \end{aligned}$	$\begin{aligned} & -100 \\ & +17 \end{aligned}$	$\begin{aligned} & \mathrm{N}+\mathrm{O} \\ & 11+ \end{aligned}$
				$\begin{aligned} & \text { 感淢荡 } \\ & \hline \end{aligned}$		
毣荡	$\begin{aligned} & \vec{x} \\ & \end{aligned}$					
－ $\begin{aligned} \text {－7 } \\ \cdots-1\end{aligned}$	$\underset{\sim}{\square}$			－ $\begin{gathered}\text {－} \\ \sim\end{gathered}$	可 $\rightarrow \infty$	$\underset{\sim x}{\infty}$
－${ }_{\text {令 }}$	㤩	50，只	둑＋ํㅣ	简云会	$\sim \infty$	시농ㅇ․
	울	乐完妥		呙呙落	앙융	88080
90%	이우곡	号牟苞	coso．	号足永	9앙ㅇㅇㅇ	909
部宁弪。	閣の	呺只去	二笔㕲	¢0袻	に1－	10 $0 \times$
8R20	サ下里	永法に	或にな	皆号只	$\stackrel{\square}{\sim}$	$\vec{\infty} \hat{x} \vec{x}$
－${ }^{-1}$	－		c只品	犮昌 \ddagger	只只 ${ }^{\circ}$	O以品
入ッ	${ }_{\sim}^{\infty}$ 유곡	－109000	읭․		合家㙃	の号过
쳇ำ ${ }^{(1)}$	${ }_{\sim}^{\infty} \times$		去会管	がった	，品边	呙客示
药	気	曷官	为㽞	$\begin{aligned} & \text { B } \\ & \text { 呙 } \\ & \text { 伿 } \end{aligned}$	昭定空	\underbrace{x}_{\wedge}
$\begin{aligned} & \text { KOM } \\ & \$ 9 \% \end{aligned}$				$\begin{aligned} & \text { T0类 } \\ & \text { 品品 } \end{aligned}$		$\begin{aligned} & 6 \rightarrow 0 \\ & \end{aligned}$

TABLE 13.-The valuex of Dip reduced to epochs $1909 \cdot 0,1920 \cdot 0$ and 1931.0 and the Annual changes

$\begin{aligned} & \min \varphi \\ & \text { ing } \\ & +++ \end{aligned}$	$\begin{aligned} & \text { roc é } \\ & \text { in } \dot{\text { in }} \\ & +++ \\ & \hline \end{aligned}$		$\begin{aligned} & \text { NHA } \\ & \dot{\sim} \boldsymbol{n} \\ & +1+ \end{aligned}$		$\begin{aligned} & \text { en } \begin{array}{c} \text { N } \\ \dot{\sim} \dot{\sim} \\ +++ \end{array} \end{aligned}$	$\begin{aligned} & \text { Nos.o } \\ & \dot{\sin } \\ & +1 \end{aligned}$
Mल－	ササ＋ $\dot{0} \dot{\oplus} \dot{\oplus}$	$\begin{aligned} & 0 \times N \\ & \dot{0} \dot{0} \dot{0} \end{aligned}$	－ 00 0 on	－o？ sco	$+\infty 0$	4 ロー．
＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋
	$\begin{aligned} & 0 \\ & x \\ & x \\ & 10 \end{aligned}$			$\begin{aligned} & \text { Nope } \\ & \text { Nox- } \end{aligned}$		
＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋
	$\begin{aligned} & c+4 \\ & \sin \end{aligned}$		$\begin{aligned} & x=10 \\ & x x_{1} \end{aligned}$	$\begin{array}{ll} 11 \\ \vdots \\ \text { on } \end{array}$		$\because \bigcirc$ Bisision
＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋	＋＋＋
reo		$x+0$	coc	1－09	O00	？NT－
\％in	$\dot{\infty}+\dot{¢}$	苍家守	守矣宗	－-1	min	
\％ 0_{0} ¢		等占品			※¢	\％${ }_{\sim}^{\circ}$
－7\％	$\cdots+$	$\xrightarrow{\square} \times$	$\bigcirc \rightarrow 0$	＋¢の．		$\rightarrow \infty$ \％
成会管			边家	＋	－아N．N	$\infty \times$
敞苓	简式\＃	而员昌		成示示	㗊7品	
500	¢¢．	＋か ¢	¢ ب¢	－0サ	\bigcirc	$\infty 09$
¢0，	$\infty \dot{\text { ¢ }}$	－宜采	ヘ亩安	氕灾它	＋+	兵戠它
晾笭	へ⿵入入	等足员	ミ去馬	＋180	枵夺分	
$\bigcirc 0$	08	¢00	－ 0	5	Nベ	$\bigcirc \infty$
\％${ }^{\text {in }}$	$\dot{\sigma}$＋	㿽穴安	웅웅	\therefore－	$\dot{\infty}$	
	＋	等盛吕	※界领	足匍	会牙宛	
－${ }_{\text {n }}^{\text {n }}$	$\underset{\sim}{\text { m }}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$		$\underset{-1}{\infty}$	$\underset{\sim}{p} \underset{\sim}{n}$	$\overrightarrow{e x}_{n} e_{n}$
－9	10\％	匍示	$x+\cdots$	管雨융	\cdots	きがす。
80융융		號安员	只克僉	会会息	앙융	앙웅옹
앙％	으웅오	우ㅇㅠㅔ	$=8$		9	900
汸安洨		슁유웅	二采品	¢○发	「「ス	的 08
		令行に	足上守	成只采	我我	∞
－¢ ¢＝	－－${ }^{\text {a }}$	令钢会	品只皆	유육	옹ㅇ	윽ㅇ
何が边	둔우옥	100000	O吕尔		尔显䫆	¢
	떵웅	洔成会	才只管	國に		成令令
号它	$\begin{aligned} & \text { تy } \\ & \text { 甙品 } \end{aligned}$	品号	专菏	$\begin{aligned} & \text { EB } \\ & \text { B } \\ & \text { 呙 } \end{aligned}$	気菏落	昜
3000	万サら	O013	H牙里	704		¢づ
99\％	个留濄	解古莫	吕浞淐		¢88080	\％\％す

TABLE 14.-The values of the Total Force and its components reduced to epochs $1909 \cdot 0,1920 \cdot 0$ and $1931 \cdot 0$.

$\left\lvert\, \begin{aligned} & \text { Degreee } \\ & \text { sheot } \\ & \text { Not. } \end{aligned}\right.$	$\begin{aligned} & \text { Statiou } \\ & \text { No. } \end{aligned}$	Name of Station	Latitule	19090				1920 ${ }^{\circ}$				19310			
				$\begin{array}{\|l} \text { Total } \\ \text { Force } \\ F \end{array}$	Components			$\underset{F}{\substack{\text { Fotalal } \\ \text { Force }}}$	Components			$\underset{\text { Force }}{\text { Total }}$	Componemts		
					$\underset{\text { Nurth }}{ }$	$\text { E. or } \underset{Y}{ } \mathbf{w} \text {. }$	$\underset{\mathrm{Z}}{\text { Vertical }}$		$\begin{gathered} \text { North } \\ \mathbf{X} \end{gathered}$	$\underset{\mathbf{Y}}{\text { E. }} \mathbf{W}$.	$\underset{\mathbf{Z}}{\text { Vertical }}$		$\underset{\mathbf{X}}{\text { North }^{2}}$	$\text { E. } \underset{\mathbf{Y}}{\mathbf{o r}} \mathbf{w} \text {. }$	$\underset{\mathrm{Z}}{\text { Vertical }}$
				c.G.S.	C.G.S.	C.G.S.	C.G.S.	C.G.S.	.G.S.	C.G.S.	C.G.S.	C.G.S.	C.G.S.	C.G.S.	C.G.S.
34 J	III	Quetta	301221 titi 5955.	+2\%	32250	+-01674	- 30283	4×18	31825	+ 01584	- 31516	$\cdot 45544$	-31824	+ 01287	- 32562
35 P	II	Karāchi		- $+1817^{\circ}$	$\cdot 34539$	+ 010%	+ 23550	42346	. 34310	+ 00860	+ 24803	-43090	-34502	+.00592	+. 25815
38 N	xXVI	Peshāwar	$34040 \mid 713340$.	- 46934	-30839	+ 0205t'	+ 3532	-47421	-30312	+ 01848	+ 36420	-47984	-30153	+ 01659	+ 37292
38 P	xxVII	Kıundiãn	3227307128.	-4tiout	- 30985	5	53	46546	30518	+ 01658	+ +35105	- 47060	-30382	+ 01291	+ 35920
390	IV	Bahăwalpur	$292+23514035$.	+754.	$\cdot 33076$	+ 0166	+ 30054	45276	. 32731	+ 01411	+ - 31231	- 46192	32750	+.01058	+ 32558
40 A	XXIV	Ruk Junction	$\begin{array}{lllll}27 & 48 & 23 & 68 & 38 \\ 20\end{array}$	- 433×9.	$\cdot 33498$	+ 01203	+ 27550	+3947	-33180	+ 01030	+ $\cdot 28798$. 44671	-33254	+ 00726	+ 29827
40 G	XXXI	Mirpur Khās	25-311969 140.	- 23390.	34464	+.01145		+2917	- 3 ± 227	+ 00932	+ 25875	-43620	-34401	+ 00641	+ 268818
400	LXIII	Barmer	... 254435712640 .	- 22685	$\cdot 34393$	+.01136	+ 25.55	43209	-34170	+00852	+ 26432	. 43875	. 34328	+ 00509	$+\cdot 27325$
41 G	IX	Porbandar		. 41158.	$\cdot 36094$	+ 00766	+ 19764	41649	-35971	+.00478	+ 20986	- 42354	- 36286	+ 00169	+ 21846
43 G	V	Rāwalpindi		- 46915	$\cdot 31141$	+ 02013	+ 35031	47425	-30655	01768	+ 36143	. 47973	-30528	+ 01377	+ 36984
44 H	XXIX	Bikaner	$\cdots 28080731850$	+42h3.	$\cdot 33849$	+ 01225	+ 28448	44800	. 335609	+-00909	+ 29608	$\cdot 45491$	-33692	+.00549	+ 30555
44 I	XXV	Lahore	$3135 \quad 50 \mid 741850$	46173		+ 01661	+ 33170		-31680	+.01368					
440	XLIII		.29 32 10 5	+5-47	-33348	+ 01545	+ 30520	- 45797	$\cdot 33060$	+.01191 +.00510	+.31672 +.24859	- 46408	$\cdot 33097$	+.00799 +.00154	
${ }_{45}^{45} \mathrm{H}$	${ }_{\mathbf{x X X}}^{\text {I }}$	${ }_{\text {U }}^{\text {U }}$ laipur		- +42504	-35461	+00872 $+.012 \% 2$		${ }^{-43085}$	-34433	+.00846	+ +27516	-44740	-3458k	+ 0.00463	. 28380
46 A	XXXII	Viramgām	$2381072 \begin{array}{llll} \\ 23 & 3 & 30\end{array}$				+ 21644	-42239	-35543	+ 00392	+ 22818	-42944	- 35812	+.00052	
${ }_{46}^{46 \mathrm{C}}$	$\underset{\text { XLIII }}{\substack{\text { XXVII }}}$	Sachin		- 40545	36519	+.00311 +.00640	$+\cdot 18909$ +17367	$7 \cdot 41060$		- 00081 +.00202	+20072 +.18457	${ }_{\cdot}{ }_{412388}$	-37240	-. 00439	. 19290

TABLE 15.-Instrumental constants.

TABLE 15.-Annual mean values of $H-32,000 \gamma$ and discordance between No. 17 \& No. 5 Magnetometers.

Tar No.s	H_{1}		H_{2}		H_{3}	
	So. 17	No. ${ }^{\text {d-- No. } 17}$	No. 17	No. 5-No. 17	No. 17	No. 5 - No. 17
	951	+ 8	951	+8		+ 4
1803	943	$+10$	9.42	$+11$	9.51	+ 2
1924 939	428	+11	928	+11	! 931	$+8$
1927 019	933	+13	933	+13	933	$+16$
1194948	9193	+ 9	941	+ 7	94.1	+ ${ }^{+}$
1! 1×3 !	9 +6	9	$9+6$	+ 9	945	$+10$
11430) 979	9173	+16		+17	960	$+19$
Range of v:miation.		8		10		17

TABLE 17.-Kevised values of m of Mregnetometer No. 17.

Month	1920	1921	1924	1923	1924	1925	1926	1927	1928	1929	1930
	C. G. S.	CGS	C. G S.	C. G. S.	C. G. S.	C. G. S.					
January	$806 \cdot 60$	806.90	806.85	80f. 55	806.84	806.61	806.78	$806 \cdot 90$	806.96	806.88	806.87
February	. 65	806.91	. 99	-47	806.88	. 86	84	806.98	806.92	807.02	806.97
March	. 66	807.07	806.96	. 57	807.01	806.91	83	807.05	807.08	. 07	807.17
April	74	09	807.23	. 88	- 05	807.05	806.96	- 18	11	. 07	. 09
May	.73	24	$807 \cdot 07$. 88	-07	806.92	807.06	$\cdot 19$	22	- 12	- 16
June	. 70	-19	$806 \cdot 65$. 84	807.27	.74	807. 24	$\cdot 33$	807.09	. 03	$807 \cdot 28$
July	-56	807.06	66	. 73	806.89	-69	80f. 8 ¢	17	806.94	807.06	806.97
August	. 54	806.98	53	. 85	. 93	85	806.94	. 04	807.04	*	807.05
September	. 53	95	50	-82	. 96	.90	807.04	.09	-02	*	. 05
October	-79	94	42	. 92	. 87	-	806.99	$\cdot 15$	807-02	807-18	. 07
November	. 88	99	64	. 82	. 71	76	-89	. 03	806.91	807.00	$807 \cdot 10$
Decernber	806.84	806.96	806.68	806.86	806.74	806.75	$806 \cdot 97$	807.04	806.89	806.96	806.99
Means	806. t 9	807.02	806.77	806.77	806.94	806.82	$806 \cdot 95$	807.10	807.02	807.04	807.06

[^28]TABLE 18.-Monthly mean values of $H-32,000 \gamma$. Magnetometer No. 1 in.
H_{1} results from acceptance of monthly mean values of m.
H_{2} results from acceptance of annual mean values of m.
H_{3} results from acceptance of smoothed values of m. See Plate XXIII

Month	1920			1921			1922			1923			1924	
	\boldsymbol{H}_{1}	H_{2}	H_{3}	H_{1}	${ }_{\sim}$	H_{3}	H_{1}	H_{3}	H_{3}	H_{1}	H_{2}	H_{1}	H_{1}	$\mathrm{H}_{4} \mathrm{H}$
	${ }^{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	
January	980	982	999	963	968	970	938	939	951	936	944	955	939	
February	980	981	998	967	971	973	938	932	944	933	944	955	942	$944{ }^{9}$
March	969	970	987	974	972	974	943	931	943	930	985	946	952	9519
April	96.5	965	982	973	970	972	952	931	943	935	928	939	958	938.9
May	977	976	943	956	947	949	963	937	949	942	937	948	959	$983{ }^{9}$
June	9×7	988	100.	963	$95{ }^{\text {9 }}$	958	949	$9 \cdot 4$	956	941	933	944	960	94t
July	982	987	1004	968	966	968	937	936	948	941	942	953	956	935 ${ }^{4}$
August	973	979	996	953	955	957	929	933	945	952	945	956	957	9.914
September	955	961	978	950	953	955	927	928	940	953	946	957	943	9.2.
October	956	952	!139	949	952	954	918	930	942	941	932	943	951	953: ${ }^{1}$
November	958	949	96 ¢	953	954	956	931	936	948	947	945	956	944	9839
December	968	95 ¢	973	949	951	953	929	936	948	947	945	956	947	935
Means	970	971	984	960	960	962	938	984	946	912	940	951	951	9514

Month	1925			1926			1927			1928			1929			1930	
	H_{1}	H_{3}	H_{3}	H_{1}	H_{2}	H_{3}	H_{1}	H_{2}	H_{3}	H_{1}	H_{2}	H_{3}	H_{1}	H_{2}	H_{3}	H_{1}	H
	γ	${ }^{\gamma}$	${ }^{\gamma}$	${ }_{9}{ }_{9}$	${ }_{9}^{\gamma}$	${ }_{9}{ }^{\gamma}$	${ }_{9}{ }^{\gamma}$	952	$\stackrel{\gamma}{8}$								
Jimuary	941	$9+9$	9.58	920	927	930	923	931	928	965	968	968	$9+1$	$9+1$	940	902 908	Wil
February	947	- 4	954	913	917	920	938	943	940	942	947	$9+7$	961	${ }^{953}$	982 934	938 963	20
March	$9+9$	$9+5$	$95+$	91.	419	922	933	935	932	948	944	94	945	935	934	96.7	?
April	9\%0)	(1,0)	$9: 99$	922	921	924	93.4	$9: 31$	928	(94.)	$9+4$	94	9.1	948	947	95.	
May	4.95	4.1	960	$1: 36$	$9: 3$	934	988	$9: 35$	$9: 32$	959	9.8	952	95:3	947	946	${ }^{976}$	
June	9 O	0.13	4, 2	910	929	931	957	947	94.	939	939	333!	94.9	069	958	916	4,
Truly	! 1 3 1	9 H	9.38	93.4	938	$9+1$	9.50	917	$9+4$	927	929	929	94.3	952	9.51		
Aughet	944	9上2	951	911	$9+1$	9+4	931	93.4	931	932	924	929				4	
Septemher	9:3.	418	9\%0	937	938	$9: 36$	934	938	9:32	929	929	92 !				951	
Oetohur	931.	\%	94.5	919	417	920	920	918	91.5	91.	$9: 38$	938	910	940	939	978	4
Norember	9:8.:	19	917	- 2	429	¢132	9836	9	9:37	929	98:3	9:3:3	0:3	94.	94.	976	did
Deroumher	9:34	$11+1$	950	93.3	4 S	4.35	9:3:3	:136	9:3:3	917	$9+2$	912	(13:5	94	943	${ }^{4}$	
Mrans	968	442	981	929	928	$9: 31$	938	936	933	0989	9.4	9.41		946	945	;	9n?

Chapter IX

THE LAY-OUT OF GEODETIC TRIANGULATION,* AND THE INTERVALS BETWEEN BASE-LINES AND LAPLACE POINTS

by J. de Graff Hunter, sc.d.

The Lay-out of Geodetic Triangulation

1. Generally a series of geodetic triangulation is composed of chains of figures of the same type-(a) single triangles, (b) braced quadrilaterals, (c) hexagons,-with occasional odd figures where the land configuration dictates their necessity. Thus (a) may contain occasional (b) and vice versa; and on occasion when the diagonals of (b) offer difficulties another type (d)-centred quadrilaterals-may be introduced.

The type (c) may be very good and has the advantage of covering a wider region and fixing more precise positions than either (a) or (b); but this is offset by the additional labour and slowness of progress. Ordinarily the function of a geodetic series is to carry accuracy of relative position in one direction with small accumulation of error, and additional local positions may more economically be provided by the subsequent minor triangulation, which in any case is called for when mapping is undertaken.

Accordingly we may consider types (a) and (b) as of paramount importance; while (d) is of occasional importance and (c) will only rarely warrant consideration.
2. The lay-out of whatever type may be decided on is of fundamental importance. The reconnaissance officer has a very responsible task in choosing figures which should balance the qualities of great "strength" with economy of labour for their observation. Accordingly he should have the clearest possible perception of what shape of figure is best and how far this optimum form should he departed from to meat peomomic conditions. He should know to what degree the subsequent errors of observation may be corrected by introrluction of additional base-lines and Laplace points; and again must balaner up the ceonomics of these, so that for any postulated dogree of accuracy the whole process-triangulation, bass'lines and Laplace points may cost as little as possible and he capable of completion when due. No subsequent efforts of the observer occupying the stations can compensate for ill-laid-out figures.

[^29]3. It is proper then to investigate the conditions which govern the strength and performance of figures of various shapes. Ordinarily there is no reason to anticipate that the precision of the subsequent measurements of the several angles will vary except by chance-though in special cases the observer may properly be told to concentrate more than normal observation effort; and so in the first place it is sufficient to consider all angles as of unit weight.

Our first desideratum then is to ascertain the strength of all likely figures as regards log relative scale and relative azimuth of sides of exit and entrance, taking all angles or all directions as of the same weight. In the present paper this has not been carried further than for the cases of single triangles and braced quadrilaterals.
4. We are concerned with two forms of strength of figures, (a) as regards scale, (b) as regards azimuth. A peculiarity of triangulation is that any error of scale or azimuth is passed on to all the following figures.

Denote by $w_{r}=1 / u_{F}$ the strength of $\log [($ sirle of exit $) /($ side of entry)], and by ${ }^{\prime} w_{F}=1 /{ }_{n} u_{F}$ the strength of relative azimuth of sile of exit to side of entry.
5. I use the words " weight" and "strength" as equivalent, and in my own mind I always think of the strength of a figure. The weight of a function F of the angles is

$$
f^{1} \sum_{1}^{n} w v^{2}
$$

where $n_{1}, \ldots r_{\text {, }}$ are the changes in the n observed angles which cause the changr f in f with the least effort. If the angles are represented mechanically and their changes controllerl by elastic springs, then Swo is also proportional to the work done in effecting the change: and the principle of last work shows that such a mechanical arrangement would yield in the "most probable" way. Accordingly we can always replace "minimum square errors" by "work done". An instrument wiving effect to this principle is cxhibited,* with which it is hoped to solve our problems rapidly.
6. Thepe is little diffieulty in writing down an expression for
 angles matirl by r combitions, then u_{F} is expressible as Δ^{\prime} / Δ where Δ is a detwiminant of r rows and Δ ' is formed by " bordering" it ly onu row and column. These determinants are not alasy to see through. יven for the case of the braced quadrilatoral. Simpler resulte can low ohtained l_{y} y the use of suitable linear functions of the angles, chosen to avoid tho entry of so many equations of condition.
7. Two cases arise accorcling to the methon in which the angles are to be measured. Some geodesists have arlvocated the independent measury of wach angle; while the more usual (and I think

[^30]better) practice is to measure a round of angles as a whole. The former method leads to an independent weight for each single angle, and a reduced weight for a compound angle. The latter method of measuring direction is more economic but leads to the weights of the angles being not independent; however compound angles and single angles are of much the same weight-unless indeed one or more of the directions is shaky, maybe as a result of lateral refraction.

From the point of view of computing the strength of the figure, it is much simpler to have independent weights for each angle. If these are all unity the resulting strength is roughly three-quarters* of that arising when all the directions are measured with weight $2 \dagger$, if the figure is not too irregular-the improvement due to the direction method resulting from the improved weight of the compound angles.

To be strictly precise in the case of the direction method if all the angles at a station are measured in a round, they are all interdependent; and so one figure ought to be considered simultaneously with the next and so on-meaning that all figures should be treated sinultaneously, which is obviously practically impossible. We must ignore this and consider only those angles at a station which relate to one figure as measured in a round.
8. I have derived some general formulæ, but will refer only to some of the simpler ones. Consider a quadrilateral ABCD of which $A B$ and $C D$ are flank sides and whose diagonals meet in O. Denote the cotangents of the angles at A by c_{1}, c_{2}; at B by c_{3}, c_{1} etc. The eight single angles of the figure, beginning with CAB may be represented by

$$
\frac{1}{2} \Omega \pm X, \quad \frac{\pi}{2}-\frac{1}{2} \Omega \pm Y, \quad \frac{1}{2} \Omega \pm Z, \quad \frac{\pi}{2}-\frac{1}{2} \Omega \pm P
$$

Ω being the angle DOA between the diagonals.

$$
\begin{aligned}
& \text { Let } A=c_{2}+c_{3}, B=c_{4}+c_{6}, C=c_{6}+c_{7}, J=c_{8}+c_{1} ; \\
& A^{\prime}=c_{2}-c_{3}, B^{\prime}=c_{4}-c_{5}, C^{\prime}=c_{6}-c_{7}, l^{\prime}=c_{8}-c_{1} .
\end{aligned}
$$

Also let $e=\frac{1}{2}\left(c_{2}-c_{3}+c_{5}-c_{B}\right), E=e+e^{\prime}$;
$e^{\prime}=\frac{1}{2}\left(c_{8}-c_{7}+c_{1}-c_{4}\right), E^{\prime}=e-e^{\prime}$.

$\leftarrow \ldots$

[^31]On the assumption that the angles 1 to 8 are measured independently with equal weights, let u_{F} be the inverse weight of $\log (\mathrm{CB} / \mathrm{AD})$, and ${ }_{a} u_{F}$ of azimuth of BC relative to AD . Let $u_{F i}$ and ${ }_{a} u_{F i}$ be similar quantities for the case when directions have been observed by rounds of angles at A, B, C, D. For a rectangular figure $X=Y=Z=$ $P=0$. Let us call a figure for which none of these quantities exceed 15°, a "quasi-rectangular figure"; and if they do not exceed 5° a "good quasi-rectangular figure".

For a good quasi-rectangular figure $\frac{3}{4} u_{F}=u_{F t}$ (nearly). ... (1)
9. When the figure is cyclic, $A=C, B=D, A^{\prime}=-C^{\prime}, B^{\prime}=-D^{\prime}$, $e=-e^{\prime}$ and the formulæ are much simplified. There is no other essential merit in the cyclic property; in fact for azimuth

$$
\begin{equation*}
{ }_{a} u_{F}=1-\frac{\frac{1}{2}(B-D)^{2}}{A^{2}+B^{2}+C^{2}+D^{2}+E^{2}} \tag{2}
\end{equation*}
$$

which is greatest, i.e., worst, when the quadrilateral is cyclic. The variation from this maximum value of unity is clearly small unless the quadrilateral is very irregular.

For any cyclic quadrilateral, ${ }_{\text {" }} u_{F}=1$;
so clearly in the interests of azimuth alone elongated figures are to be preferred.
10. For any quadrilateral,

$$
\begin{equation*}
u_{F}=\frac{L L^{\prime}-K^{2}}{L+L^{\prime}+2 K}=\frac{1}{4}\left[L+L^{\prime}-2 K-\frac{\left(L-L^{\prime}\right)^{2}}{L+L^{\prime}+2 K}\right], \ldots \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& 2 L=A^{2}+c_{5}^{2}+c_{8}^{2}+e^{2} \\
& 2 L^{\prime}=C^{2}+c_{1}^{2}+c_{4}^{2}+e^{\prime 2} \\
& 2 K=c_{4} c_{5}+c_{1} c_{8}+e e^{\prime}
\end{aligned}
$$

and

$$
2\left(L+L^{\prime}+2 K\right)=A^{2}+B^{2}+C^{2}+D^{2}+E^{2}
$$

This is not difficult to compute, but would be a nuisance to an officer in the field; though on occasion it should be faced.

If however the quadrilateral be cyclic,

$$
\begin{equation*}
u_{F}=\frac{A^{2}}{4}\left\{1+\frac{1}{2}\left(\frac{A^{\prime}}{A}\right)^{2}+\frac{B^{\prime 2}}{A^{2}+B^{2}}\right\} . \tag{4}
\end{equation*}
$$

Now it will never happen that the quadrilateral is exactly cyclic; but this equation gives a good idea of what departure from regularity amounts to. From it we can say that for a good quasi-rectangular figure the value of u_{F} will not be more thinn 10% greater than for a perfect rectangle. So long as the X, Y, Z, P can be kept down to σ° there is no need to worry; and even 10° would not be serious.
11. For a good quasi-rectangular figure we may write

$$
\begin{equation*}
u_{F}=\cot ^{2} \frac{1}{2} \Omega, . \tag{5}
\end{equation*}
$$

with accuracy to 10% or less if Ω is not less than 60°. This shows that for scale error a squat figure is desirable.
12. In the case of a triangle it is easy to show that with unit meight of all angles
and

$$
\begin{aligned}
u_{F} & =\frac{2}{3}\left(c_{a}^{2}+c_{a} c_{\beta}+c_{\beta}^{2}\right), \\
{ }_{a} u_{F} & =\frac{2}{3} .
\end{aligned}
$$

Consider a pair of such triangles which form a parallelogram. This may be compared with the braced parallelogram for which

$$
u_{F}=\frac{1}{4} A^{2}\left[1+\left(A^{\prime} / A\right)^{2}\right] .
$$

On investigation we find that the pair of triangles has a greater strength as regards scale than the similar braced figure when BN is greater than $\frac{1}{4}$ BA. This is because an important angle, when measured as two component angles, has less weight than when measured singly.

I am not convinced of the wisdom under all conditions of the general principle which some have laid down, that geodetic series should always have at least two alternative chains of simple triangles. If one can trust the good faith of the observer, and avoid rays badly affected by lateral refraction, there is much to be said for series of simple triangles, which involve less observation and demand less of the reconnaissance officer.
13. Reverting to the braced quadrilateral, let us now consider the question of progiess made by the figure. Ground must be covered, and it is useless transferring great accuracy of scale by a microscopic distance. So long as good quasi-rectangular figures are considered, these may be treated as perfect rectangles. [vide (5)]. Let b be the breadth and l the length of the figure, in the direction of the series. Then

$$
u_{F}=(l / b)^{2} .
$$

The progress is l, so we may call $u_{F} / l=l / b^{2}$ the "absolute inverse efficiency" of the figure. The ratio of this to the same quantity
for a square of side b, viz., l / b, is the
"relative inverse efficiency" of scale $=l / b=H$.
Similarly, relative inverse efficiency of azimuth is $b / l={ }_{a} H$.
14. The inverse weight of scale after n figures is

$$
J_{F}=\Sigma(l / b)^{2},
$$

and a distance $\Sigma l=n . l_{m}$ has been traversed.
Were the series replaced by one of r equal squares of side b_{m} where $n . b_{m}=\Sigma b$ and $r . b_{m}=n . l_{m}$, the inverse weight would be
so

$$
\begin{aligned}
U_{S} & =\sum_{1}^{r} 1=r=n . l_{m} / b_{n} . \\
U_{F} / U_{S} & =\left(b_{m} / n . l_{m}\right) \Sigma(l / b)^{2} .
\end{aligned}
$$

If $l=(1+f) l_{m}$ and $1 / b=(1+F) / b_{m}$ and the distribution of f and F is random, and these quantities rarely attain the value 0.5 , then

$$
U_{F} / U_{S}=\left\{1+\frac{1}{n}(f+F)^{2}\right\} H_{m} \text { approximately }=H_{m} \text { nearly }
$$

where

$$
\begin{aligned}
& H_{m}=(\Sigma H) / n . \\
& \begin{aligned}
{ }_{a} U_{F} /{ }_{a} U_{s}=n / r & =b_{m} / l_{m} \text { exactly } \\
& ={ }_{a} H_{m} .
\end{aligned}
\end{aligned}
$$

Intervals between Base-Lines and Laplace Points

15. A good many years ago I introduced a function " M "* to characterize the performance of geodetic triangulation. It comprised the factor m / b^{1} ' in which " m " was Ferrero's quantity $\left[\left(\Sigma \Delta^{2}\right) / 3 n\right]^{1}$ and b was the length of a side of the figures, supposed regular and equal-an assumption not far from the truth in the case of some good geodetic series.

Under this assumption the errors of the triangulation after a course of S miles can be expressed

$$
\begin{array}{ll}
\text { p.e. in } 7 \text { th place of } \log \text { side } & =3 \cdot 32 M S^{\frac{1}{2}}, \\
\text { p.e. in azimuth } & =0 \cdot 158 \mathrm{MS}^{\frac{1}{2}} \text { seconds, }
\end{array}
$$

in which the numerical factors depend on an average side length (18 miles) which was taken as a basis for M. The $\rho . e$. .'s of displacement were also expressed, involving M as a factor.
16. We can now extend the above equations to include the cases of good quasi-rectangular quadrilaterals. It is only necessary to multiply them by the quantities (e.g., U_{F} / U_{S}) found in 14. Thus

$$
\begin{aligned}
\text { p.e. in } 7 \text { th place of } \log \text { side } & =3 \cdot 32 H_{m} M S^{\frac{1}{2}} \\
\text { p.e. in azimuth } & =0 \cdot 158 b_{m} / l_{m} . M S^{\frac{1}{2}} .
\end{aligned}
$$

17. To ascertain the distance which should be allowed before a base-line or Laplace point is introcluced, these expressions may be employed. I dirl this a few years ago in the case of regular figures.
[^32]The formulæ deduced, modified to take a good quasi-rectangular tigure into account, are now given.

Denote by S the proper distance between bases. Then

$$
S . H_{m}^{2}=13 \cdot 5(B / M)^{2}+2 \cdot 68 \mathrm{c}\left(1+b_{m} / \mathrm{c}\right)^{2},^{*}
$$

in which $B .10^{6}$ is the probable scale of error of base-line, c is the length of either base, $M=m\left(18 / b_{n}\right)^{\frac{1}{2}}$.
This is based on the criterion that it is worth while introducing a base when the probable error developed in the triangulation is twice that of the control.

The quantities in the formula for S are as below:-
Table I.-Values of $13 \cdot 5(B / M)^{2}$ in miles.

M / B	0.2	0.3	0.4	0.5	0.7	1.0	
$13.5 B^{2} / M^{2}$	\ldots	337	150	85	54	28	14

Table II.-Values of $2 \cdot 68 \mathrm{c}\left(1+b_{m} / \mathrm{c}\right)^{2}$ in miles.

c (b_{n}	8	10	12	15	20	25	30	35	40	45
3	108	151	201	289	472	700	973	1290	1652	2509
4	97	132	171	24.1	386	563	775	1019	1298	1954
5	91	121	155	214	335	482	657	858	1086	1621
7	86	111	138	185	274	392	524	676	846	1244
10	86	104	129	167	24.1	328	429	543	671	965

Denote by S^{\prime} the proper distance between Laplace points. Then

$$
S^{\prime}\left(\frac{b_{m}}{l_{m}}\right)^{2}=325\left(a^{2} \sec ^{2} \phi_{\mathrm{n}}+\beta^{2} \tan ^{2} \phi_{n}\right) / M^{2}, \dagger
$$

in which
$2 \tan ^{2} \phi_{n}=\tan ^{2} \phi+\tan ^{9} \phi^{\prime}$,
ϕ, ϕ^{\prime} are latitudes of the terminal points,
a sec ϕ is probable error in seconds of are of the observed azimuths,
$\beta \tan \phi / 15$ is probable error in seconds of time of the observed time difference.

[^33]The relevant quantities are now tabulated with $a=0.2$, $\beta=0 \cdot 3$, for various values of M and the latitude:-

Table III.—Values of $325\left(a^{2} \sec ^{2} \phi_{\mathrm{a}}+\beta^{2} \tan ^{2} \phi_{\mathrm{a}}\right) / M^{2}$.

${ }_{\phi_{\mathbf{a}}}{ }^{M}$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	0.5	$0 \cdot 7$	1.0
$50^{\circ} \ldots$	1812	807	454	291	148	73
40°	1068	474	267	171	87	43
30°	675	300	169	108	55	27
20°	461	206	116	74	38	19
10°	357	157	89	57	29	14
0°.	325	144	81	52	27	13

18. Nowadays since wireless longitudes have become so simple both in execution and as regards apparatus, there are few places where a Laplace point cannot be formed. On the other hand, bases, though far more rapidly measured even on more difflcult terrain than was possible thirty years ago, cannot always be introduced on account of unsuitable terrain. In such cases where bases can be introduced but sparingly, the lay-out should be such as to farour scale-that is, squat figures should be employed.

Again in high latitudes the Laplace control becomes ineffective. In that case accuracy of azimuth should be favoured by figures with the longest possible flank sides, unless indeed base-lines are impracticable where required.

Apart from these considerations there is another of great importance which I have not been able to touch-the economics of the work. Lay-out of figures and labour devoted to observations should both be considered so as to get the desired accuracy at reasonable cost in reasonable time.

PUBLICATIONS

OF THE
 SURVEYOFINDIA

(Corrected up to 31st December 1931)

PUBLICATIONS

of the
SURVEY OF INDIA
Obtainable from the Director, Geodetic Branch, Survey of India,Dehra Dũn, U.P.
SYNOPSIS
Part I-Numerical Data
Page
Triangulation Pamphlets 153
Levelling Pamphlets 153-157
Tide-Tables 157
Part II-Geodetic Works of Reference
Everest's Great Arc Books 158
G.T.S. Volumes 158-162

* Part III-Historical and General Reports
Memoirs 162
Annual and Special $\left\{\begin{array}{l}\text { General Reports } \\ \text { Reports }\end{array}\left\{\begin{array}{l}\text { Gap Publication and Office Work } \\ \text { Map } \\ \text { Extracts from Narrative Reports } \\ \text { Reor }\end{array}\right.\right.$ 162,163
Records of the Survey of India ... 164, 165
Geodetic Reports 165, 166
* Part IV-Catalogues and Instructions
Departmental Orders 166, 167
Catalogues and Lists 167
Tables and Star Charts 168
Old Manuals 168, 169
Survey of India Handbooks 169
Notes and Instructions 170
* Part V-Miscellaneous Papers
Unclassified Papers $\left\{\begin{array}{l}\text { Geography, Exploration, Special Reports, } \\ \text { Geodesy, Projections, Mapping }\end{array}\right.$ 170-172
Departmental Papers 174, 175$\begin{array}{lllllr}\text { Professional Forms } & \ldots & \ldots & . . & \ldots & 174,175 \\ & \ldots & \ldots & \ldots & 175\end{array}$List of more important contributions by the officers of theSurvey of India to various extra-departmental publica-tions and related articles175-179

[^34]Sterling Prices of Publications.-The prices to be charged for Survey of India publications in sterling equivalents in English money have been worked out under the rules given in letter No. A-401 dated the 17th January 1924 from the Under Secretary to the Government of India, Department of Industries and Labour, Delhi, to the Secretary to the High Commissioner for India. General Department, 42 Grosvenor Gurdens, Isondon, S.W. 1. 'Ihese sterling prices are subject to fluctuation with the exchange rate and will be revised from time to time. The prices at the current rate of exchange are:-

Price in Indian money		English equivalent	
Rupees	Annas	Shilling	Pence
0	2	0	3
0	4	0	5
0	8	0	10
0	12	1	3
1	0	1	9
1	2	1	11
1	8	2	6
1	12	3	0
2	0	3	6
2	8	4	6
3	0	5	3
3	8	6	0
4.	0	${ }^{6}$	9
4	4	7	3
4	8	7	6
5	0	8	3
5	8	9	0
6	0	9	9
(8	10	6
7	0	11	6
7	8	12	0
8	0	13	6
8	8	14	6
9	0	15	0
9	8	16	0
10	0	16	6
10	8	17	6
12	0	19	(

PART I.-NUMERICAL DATA

Triangulation Pamphlets-each covering one square degree, giving descriptions, positions. (latitude and longitude) and heights of triangulated points and other data with chart. The chart shows the plan of triangulation with the position of stations and points. Triangulation data falling in $1 / \mathrm{M}$ sheet are printed in a series of sixteen pamphlets A to P. In the last pamphlet of every series, a coloured map on scale 1 inch $=16$ miles approximately is given in addition to the chart, to illustrate the topographical features of the area covered by the $1 / M$ sheet. Pamphlets having this map are charged Ks. 1-8 extra.

Index charts of the published triangulation pamphlets are given at the end.

Price Re. l per pamphlet. Published at Debra Dūn.

Levelling Pamphlets-

(i) Levelling of Precision-giving heights and descriptions of all Benchmarks, tixed by Levelling of Precision. Each pamphlet embraces an area of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / M$ map of India. Each is illustrated by a map of the area. Published at Dehra Dūn.
(a) Levelling of Precision in India and Burma-

Pamphlet		$\begin{gathered} \text { Latitude } \\ \text { N. } \end{gathered}$	$\underset{\text { E. }}{\text { Longitude }}$	Pnb- lished in	Price
Sheet	Distinctive name of sheet				
34	(Quetta)	$28^{\circ}-3{ }^{\circ}$	64-68 ${ }^{\circ}$	1916	Rs. 2-0.0)
35	(Karāchi) ...	24-28	64-68	1911	Rs. 2-(0)-0
38	(Kābul)	32-36	68-72	1912	Rs. 2.0-0
39	(Multān)	28-32	68-72	1913	Rs. 2-0.0
	Addendum to 39		...	1916	Rs. 2-0.0
40	(Hyderäbād, Sind)	24-28	68-72	1911	Rs. 2.0.0
41	(Rājkot) ...	20-24	68-72	1913	Rs. 2.0.0
43	(Srinagar) (1)	32-36	72-76	1913	Rs. 2-0-0
	Addendum to 43			1915	Rs. 2-0.0
44	(Lahore) .	28-32	72-76	1926	Rs. 3-0-0
45	(Ajmer) ...	24-28	72-76	1911	Rs. 20-0
46	(Baroda) (2)	20-24	72-76	1912	Rs. 2-9.0
47	(Bombay) (3)	16-20	72-76	1912	Ks. 2.0 .0
	Addendum to 47, Island of Bombay	\ldots		1915	Ke. 1-0.0
48	(Goa)	12-16	72-76	1912	Rs 2-0.0
49	(Calicut)	8-12	72-76	1911	Re. 1-0-0
52	(Leh)	:3-36	$7(6-80$	1912	Ke. 1-0.0
53	(Delhi) (4)	28-32	76-80)	$\underset{\substack{\text { reprinted }}}{1920}$	Rs. 3-0.0
54	$\begin{array}{lll} \text { Addendum to } 53 \text { (5) } & \ldots \\ \text { (Agra) } & \text { (6) }^{(6)} & \ldots \end{array}$	24-28	76-80		Rs. 3-0.0)

(1) includes secondary line 56 G (Wazinabad to lammāand) ; (2) includes a portion of 33 A (Nāndgaon to Ahmanlnagar) ; (3) includrs 3a A (Nandgann to Ahmadnagar); 33 B (Ahmadnagar to Dhond) and 26A (Sholapur to Bijapur) ; (t) includes $\mathbf{f i} \mathrm{H}$ H (Garhmuktesar to Aligarh) ; (5) includes 70 N (Murhal Sarai to Najibābād) ; (6) includes 64 H (Garlunuktesar to Aligarh) aud 63 B (Jhiusi to Saugor).

Levelling Pamphlets－（Continued）．

（b）Levelling of Precision in Mesopotamia－
Descriptions and heights of bench－marks in Mesopotamia in one pamphlet，published at Dehra Dūn， 1923.

Price Rs． 3.
（ii）Levelling of Secondary Precision－
Descriptions and heights of bench－marks by lines generally pro－ duced by Gestetner at Dehra Dūn．

或安安	Line namber	Situated in degree sheets	Pablished in	Price
1	52A（Ruk to Sehwān）	35 M \＆ N and 40 A	1928	As． 6
2	52 B （Daur to Lundo）	40 B \＆C	＂	＂
3	52C（Shābpur to Mahrābpur）．．．	35 N and 40 A，B，C，F\＆G	＂	＂
4	52 D （T＇ando Alāhy̧ār to Hyderābād）	40 C \＆D	＂	＂

[^35]Levelling Pamphlets-(Oontinued).

	Line number	Situated in degree sheets	Published in	Price
5	52E (Rohri to Jām Sahib)	$40 \mathrm{~A}, \mathrm{~B}$ \& E	1928	As. 6
6	52F (Shāhpur to Mīrpur Purāna)...	$40 \mathrm{~B}, \mathrm{C} \& \mathrm{G}$,	"
7	52 G [Lāndhi canal bungalow (39th mile) to Khipro]	$40 \mathrm{C} \& \mathrm{G}$	"	"
8	52H (Khipro to Ghulām Bhurgari)	40 G	"	"
9	52 I (Mïrpur Khās to Tando Ghulām Ali via Umarkot and Dādāh)	$40 \mathrm{C}, \mathrm{D}, \mathrm{G} \& \mathrm{H}$	"	"
10	52J (Mīrpur Khās to Tando Ghulām Ali via Dìgri)	40 G	"	"
11	52 K (Dīgri to Dādāh) ...	40 G \& H	"	"
12	70J (Barākar to Hazāribāgh Road)	$\left\lvert\, \begin{aligned} & 73 \mathrm{I} \text { aud } 72 \mathrm{H} \\ & \& \mathrm{~L} \end{aligned}\right.$	"	As. 12
13	74C (Howrah to Uttarpāra) 74 D (Baidyabāti to Sheorāphūli) 74 E (Bāndel Church to Bāndel Ry. Stn.) 74 F [B.M. $251(118) / 79 \mathrm{~A}$ to Pandua Ky. Stn.]	79 A \& B	"	As. 8
14	74G (B.M. 126/73M to Saktigarh Ry. Stn.) 74 H (B. M. 116/73M to Burdwān Ry. Stn.) 70 E (B.M. $85 / 73 \mathrm{M}$ to Mãnkar Ry. Stn.) 70F (B.M. 76/73M to Pānagar			
	Ky. Stn.) 70G (B.M. 58/73M to Durgāpur Ry. Stn.) 70H (B.M. 28/73M to Rānīganj Ry. Stir.) 70 I (B.M. 15/73M to Asansol, Kālipāhari \& Churulia) 70M (Khāna Ry. Stn. to Galsi Ry. Stn.)	73 I \& M	"	As. 12
15	$\left.\begin{array}{l}\text { 77Q (Calcutta to Nārāyanpur) } \\ \text { 77K (Nārāyanpur to Nārāyanpur) }\end{array}\right\}$	79 B	"	Re. 1
16	87A (Moulmein to Paan) 87B (Moulmein to Wokali) 87() (Babukon to Kawnyatkyi) 871 (Nyaungbinzeik to Natchaung)	94 H \& L and 95 \& \&	"	As. 12

Levelling Pamphlets-(Continued).

	Line number	Situated in degree sheets	Published in	Price
17	88B (Kyauktaga to Myitkyo) 88C (Dalanun to Pazunmyaung) 88D (Pegu to Zenyaungbin) 88E (Myitkyo to Okpo) 88 F (E. B. M. at R. D. 25 of the Yenwe Embankment to Uaw) 90A (Nyaungzaye to Kandin) 90B (Ma-ubin to Bassein) 90C (Sagamya to Pantanaw) 90E (Thonze to Rangoon)	$85 \mathrm{~L}, \mathrm{~N}, \mathrm{O} \& \mathrm{P}$ and 94 B,C \& D	1928	Rs, 2
18	89A (Kyaukse to Minzu) 89 B (Ywakainggyi to Amarapura) 89C (Kyaukse to Mandalay) S9D (Tangôn to Shwebo) 89F (Kabo to Myittaw) 89F (Okshitkan to Paukkan) 90 D (Meiktila to Yewe)	93 B \& C. and $84 \mathrm{M}, \mathrm{N}, \mathrm{O}$ \& P	"	Rs. 1-¢
19	29C (Nira to Batgarb)	47 F \& J	1929	As. 6
20	53A (Madad Chāndia to Mehar)	35 M	,	,
21	Ј4B (Shikārpur to Kambar) ...	40 A	,	"
22	54 C (Wāriāso to Rato-dero) ...	34 P,35 M, 39 D and 40 A .	"	"
23	55 I (Garh Mahārāja to Damāmia)	39 N,44 A\&B	"	"
24	$\left.\begin{array}{l}55 \mathrm{~K} \text { (Aherbela to Multān) } \\ 55 \mathrm{~L} \text { (Rangper to Muzaffargarh) } \\ 5.5 \text { (Muzaffargarh to Basti } \\ \text { Maluk) }\end{array}\right\}$	$39 \mathrm{~N} \& \mathrm{O}$	"	As. 10
2.5	550 (Sujābād to Sabuwāli)	390	"	As. 6
26	55P (Jabboãna to Kot Māldeo) ...	44 A	,	"
27	56H (Kasūr to Basirpur) ...	$44 \mathrm{~F}, \mathrm{I} \& \mathrm{~J}$	"	"
28	57D (Lodhrān to Bahāwalpur) ...	390	"	"
29	57 H (Basirpur to Lodhrān) ...	$\begin{aligned} & 39 \mathrm{O}, 44 \mathrm{~B}, \mathrm{C} \\ & \text { d } \mathrm{F} \end{aligned}$	"	"
30	57J (Kutabpur to Adamwāhān) ...	390	"	"
31	inL (Dīngarh to Khānpur) ...	$39 \mathrm{~L}, \mathrm{O} \& \mathrm{P}$	"	"
32	. 7 II (Mithra to Khāopur)	$\begin{aligned} & 39 \mathrm{H} \& \mathrm{~L} \text { and } \\ & 40 \mathrm{E} \& \mathrm{I} \end{aligned}$	"	"
33	57N (Chachran to Khänbela) ...	$39 \mathrm{~K}, \mathrm{~L} \& \mathrm{O}$	"	
3.4	$7 \pm \mathrm{B}$ (Kidderpore to Dublat) $\quad .$.	79 B	"	"
35	73 V (Ilastinge Bridge to Dakhineswar)	79 B	"	"

Levelling Pamphlets-(Concluded).

$\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	Line number	Situated in degree sheets	Published is	Price
36	70K (Allahābād to Barākar) ...	$\begin{aligned} & 63 \mathrm{G}, \mathrm{~K} \& O, \\ & 72 \mathrm{C}, \mathrm{G}, \mathrm{~K} \& \mathrm{~L} \\ & \text { and } 73 \mathrm{I} \end{aligned}$	1929	As. 14
37	70L (Mughal Sarāi to Hazāribāgh Road)	$\begin{gathered} 63 O \& P \text { and } \\ 72 \mathrm{D} \& \mathrm{H} \end{gathered}$,	As. 10
38	55N (Basti Maluk to Kabirwala)	$39 \mathrm{~N} \& \mathrm{O}$	1930	As. 6
39	29B (Nirla to Jhalki) ...	$47 \mathrm{~J}, \mathrm{~K} \& \mathrm{O}$,	As. 6
40	29D (Gotūr to Kalādgi)	47 L \& P	1931	As. 8
41	29B (Nīra to Jhālki)	$47 \mathrm{~J}, \mathrm{~K} \& \mathrm{O}$	1930	As. 6

Note.—See also "Levelling of Precision in India and Burma" pamphlets for certain selected lines of Secondary Precision.

Tide-Tables-

From 1881 to 1922 tidal predictions based on the observations of the Survey of India were published annually by the India Office, London. From 1923 the prediction and publication have been undertaken at Dehra Dūn by the Survey of India, and until 1930 were published as follows :-
(1) A single volume styled "The Mnjor Neries" priced Rs. 8 .
(2) Combined Pamphlets varying in price from Rs. 1-2 to Rs. 1-8 per copy.
(3) Separate Pamphlets for individual ports priced As. 12 per copy. (For contents of these publications see Geodetic Report Volume V).
Commencing from 1931, a new form of publication styled "TideTables for the Indian Ocean" has been introduced priced Rs. 3 per copy. This comprises full tide-tables for the 40 Indian ports, hithertofore predicted by the Survey of India, and 28 other standard ports covering the whole of the Indian Ocean and far East. In addition, it also contains the non-harmonic tidal constants and tidal differences for 465 ports, and the harmonic tidal constants of $1(69$ important tidal stations.

Separate Pamphlets of tide-tables have also been published for the following only :-

Bombay	price	-/12/- per copy		
Hooghly River	, R	Rs. 1/8/-		
Rangoon River	" R	Rs. 1/2/-		

PART II.-GEODETIC WORKS OF REFERENCE

Everest's Great Arc Book.

1. An account of the Measurement of an Arc of the Meridian be. tween the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$, by Captain George Everest, f.r.s. \&c., East India Company, London, 1830. (Out of print)
2. An account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 15^{\prime \prime}, 24^{\circ} 7^{\prime} 11^{\prime \prime}$ and $29^{\circ} 30^{\prime} 48^{\prime \prime}$, by Lt.-Colonel G. Everest, F.f.s. and his assistants, East India Company, London, 1847. (Out of print).
3. Engravings to illustrate the above. London, 1847. (Out of print).

G.T.S. Volumes - describing the operations of the Great Trigono.

 metrical SurveyVol. I-The Standards of Measure and the Base-Lines, also an Introductory Account of the early operations of the Survey, during the period of 1800-1830. Dehra Dūn, 1870. (Out of print).

Appendix No. 1. Description of the method of comparing, snd the apparatos employed.
Appendix No. 2. Comparisons of the Lengths of the $\mathbf{1 0}$-feet Standards A and B, and determinations of the Difference of their Expansions.
Appendix No. 3. Comparisons between the 10 -feet Standarde $I_{B}, 1 s$ and A. Appendix No. 4. Comparisons of the 6 -inch Brase Scales of the Com. pensuted Microscopes.
Appendix No 5. Determination of the Length of the Inch [7.8] on Cary's 3-foot Brass Scale.
Appendix No. 6. Comparisons between the 10 -feet Standard Bars is and A for determining the Expansion of A.
Appendir No. 7. Final determination of the Differences in Length between the 10 -feet Standurds I_{B}, I_{S} and A.
Appendix No. 8. On the Thermometers employed with the Blandards of Length.
Appendix No. 9. Determination of the Lengthe of the Sub.divieions of the Inch [a.b].
Appendix No. 10. Report on the Practical Errors of the Measurement of the Cape Comorin Base.
Vol. II-History and General Description of the Reduction of the Principal Triangulation. Dehra 1)ūn, 1879. (Out of print).
Appendix No. 1. Investigations applying to the Indian Geodeay.
Appendix No. 2. The Micrometer Microscope Theodolites.
Appendix No. 3. On Observations of Terreatrial Refraction at certain statione situated on the plains of the Prajab.
Appendix No. 4. On the Periodic Errors of Graduated Circles \&c.
Appendix No. 5. On certain Modifications of Colonel Evereat's system of observing introduced to meet the specialities of particular instruments.

G.T.S. Volumes-(Continued).

Appendix No. 6. On Tidal Observations at Karāchi in 1855.
Appendix No. 7. An alternative Metbod of obtaining the Formolx in Chapters VIII and XV emploped in the Reduction of I'riangulation.-Additional Formalæ and vemonstrations.
Appendix No. 8. On the Dispersion of Circuit Errors of Triangulation after the Angles bave been corrected for Figural Conditious.
Appendix No. 9. Corrections to Azimuthal Observations for imperfect Instramental Adjustments.
Appendix No. 10. Reduction of the NW. Quadrilateral-the Nou.Circuit Triangles and their Finad Figural Adjastments.
Appendix No. 11. The 'Iheoretical Errors of the Triangalation of the North-West Quadrilateral.
Appendix No. 12. Simaltaneous Keduction of the NW. Quadrilateral -the Compatations.
Vol. IlI-North-West Quadriluteral-The Principal Triangulation, the Base-Line Figures, the Karāchi Longitudinal, N W. Himālaya, and the Great Indus Series. Dehra Dūn, 1873. (Uut of print).
Vol. IV-North-West Quadrilateral-The Principal Triangulation, the Great Arc-Section $24^{\circ}-30^{\circ}$, Rahūn, Gurhāgarh and Jogi-Tīla
Meridional Series, and the Sutlej Series. Dehra IIñ, 1876.
Price Rs. 10-8.
Vol. IVA-North-West Quadrilateral-The Principal Triangulation, the
Jodhpur and the Eastern Sind Meridional Series with the details of their Reduction and the Final Results. Dehra Dūn, 1886. Price Rs. 10.8 .
Vol. V--Pendulum Operations, details of, by Captains J. P. Basevi and W. J. Heaviside, and of their Reduction. Dehra Dūn and Calcutta, 1879.

Price Rs. 10.8.
Appendix No. 1. Account of the Remensurement of the Length of Kater's Pendulum at the Ordnance Survey Office, Southampion.
Appendix No. 2. On the Relation between the Indian Pendulum Operations, and those wbich have been conducted elsewhere.
Appendix No. 8. On the Theory, Use and History of the Convertible Pendulum.
Appendix No. 4. On the Length of the seconds Pendulum determinable from Materiale now existing.
Appendir No. 5. A Bibliographical List of Works relating to Pendulum Operations in connection with the Problem of the Figure of the Earth.
Vol. VI-South-East Quadrilateral-The Principal Triangulation and Simultaneous Reduction of the following Series:-Great ArcSection 18° to 24°, the East Const, the Cnlcutta and the Bidar Longitudinal, the Jubbulpore and the Bilāspur Meridionals. Dehra Dūn, 1880. (Out of print.)
Vol. VII-North-East Quadrilateral-General Description and Simultaneous Reduction. Also details of the following five series :-North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karàra Meridional. Dehra Dūn, 1882.

Price Rs. 10-8.

G.T.S. Volumes-(Continued).

Appendir No. 1. The Details of the Separate Reduction of the Budhon Meridicnal Series, or Series J of the North-East Quadrilateral.

Appendix No. 2. Reduction of the North-Tast Quadrilateral. The Non. circait 'l'riangles and their Final Figural Adjastments.
Appendix No. 3. On the Theoretical Errors generated respectively in Side, Azimuth, Latitude add Longitude in a Chain of 'I'riangles.
Appendix No. 4. On the Dispersion of the Residual Errors of a Simaltaneous Reduction of several Chains of Triangles.
Vol. VIII-North-East Quadrilateral-Details of the following eleven series:-
Gurwāni Meridional, Gora Meridional, Hurīlāong Meridional, Chendwār Meridional, North Parasnāth Meridional, North Malūncha Meridional, Calcutta Meridional, East Culcutta Longitudinal, Brahmaputra Meridional, Eastern FrontierSection $23^{\circ}-26^{\circ}$, and Assam Longitudinal. Dehra Iūn, 1882. Price Rs. 10.8 .
Vol. IX-Telegraphic Longitudes-during the years $1875-77$ and 1880.81 . Dehra Uūn, 188:3. Price Rs. 10.8.

1. Determination of the Geodetic Elements of Longitude Stations.
2. Descriptions of Points used for Longitude Stations. to Part I.
3. Comparison of Geodetic with Electro-Telegraphic Arcs of Longitude.
4. Circuit Errors of Observed Arcs of Longitude.
5. Results of Idiometer Observations made during Season 1880-81.

Appendices

1. Sitnations of the Longitude Stations at Bombay, Aden and Suez
to Part II. \{3. Resalts of the Jriangulation.
2. Right Ascensions of Clock Stars.

Vol. X-Telegraphic Longitudes-during the years 1881-82, 1882.83, and 1883-84. Dehra Dūn, 1887.

Price Rs. 10-8.

Vol. XI-Astronomical Latitudes-during the period 1805-1885. Dehra 1ū̃ı, 1890.

Price Rs. 10-8,
Vol, XII-Southern Trigon-General Description and Simultaneous Reduction. Also details of the following two series:-Great Arc-Section $8^{\circ}-18^{\prime}$, and Bombay Lonçitudinal. Dehra I ün, 1890.

Price Rs. 10.8.
Vol. XIII-Sonthern Trigon - Details of the following five series :-South Konkan Coast, Manonlore Meridional, Madras Meridionnl and Const, South-Éast Coast, and Madras Longitudinal. Dehra Dūn, 1890.

Price Rs. 10.8.

G.T.S. Volumes-(Continued).

Vol. XIV-South-West Quadrilateral-Details of Principal Triangulation and Simultaneous Keduction of its component series. Dehra Dūu, 1890.

Price Rs. 10-8.
Vol. XV-Te'egraphic Longitudes-from 1885 to 1892 and the Revised Results of Volumes IX and X : also the Simultaneous Reduction and Final Kesults of the whole Operations. Dehra I)ūn, 1893.

Price Rs 10-8.
Appendix No. 1. Determination of the Geodetic Elements of the Longitade Stiations.
Appendix No. 2. On Retardation. (A numerical mistake was made in this appendix in the conversion of a formula from kilometres to miles: the conclusions drawn cennot therefore be upheld).
Vol. XVI-Tidal Observations- from 1873 to 1892, and the Methods of Keduction. Dehra Dūn, 1901. Price Rs. 10-8.

Vol. XVII-Telegraphic Longitudes-during the years 1894.95-96. The Indo-European Arcs from Karāchi to Greenwich. Dehra Dūn, 1901 .

Price Rs. 10-8.
Appendix No. 1. Descriptions of Points used for Longitude Stations.
Appendix No. ©. The Longitude of Madras.
Vol. XVIII-Astronomical latitudes-from 1885 to 1905 and the deduced values of Plumb-line Deflections. Dehra Dūn, 1906.

Price Rs. 10-8.
Appendix No. 1. On Deflections of the Plumb-line in India.
Appendix No. 2 Determination of the Geodelic flements of the Latitude Stations of Bajumara, Bahak, Lambetach and Kidarkunta.
Appendix No. 3. On the (N-S) Difference exhibited by Zenith Sector No. 1.
Appendix No. 4. On the Value of the Micrometer of the Zenith Teleacope.
Appendix No. 5. On the Azimulh Observations of the Great Trigonometrical Survey of Jndia.
Appendix No. 6. A Catalogue of the Publications of the Great Trigonometricml Aurvey of India
Appendix No. 7. On the combination weights employed.
Fol. XIX-Levelling of Precision in Indin-from 1858 to 1909. Dehra Dūँ, 1910 .

Price Rs. 10.8
Appendix No. 1. Experiment to test the changes, dne to moistare and temperature, in the Length of a levelling staff.
Appendix No. ©. On the erccticn of Standard Bench-marks in India daring the gears 1904-1910.
Appendix No. 3. Memorandum on the steps taken in $1905 \cdot 1910$ to enable movementis of the liarth's Crust to be detected.
Appendix $N \cap$ 4. Dypamic and Orthometric corrections to the Himñlayan levelling lines and circuit; and a consideration of the order of magnitude of possible refraction errors.
Appendix No. 5. The passage of rivers by the levelling operations.
Appendix No. 6. The errors of the Trignonmetrical values of heighta of atations of the Principal Triangulation.
G.T.S. Volumes-(Concluded).

Appendix No. 7. The effect on the spheroidal correction of emplor. ing theoretical instead of observed valnes of gravity and a discussion of different formalæ giving variation of gravity with latitude and height.
Appendix No. 8. On the discrepancy between the Trigonometrical and Spirit-level values of the difference of height between Debra Dūn and Mussoorie.
Vol. XIXA-Bench Marks on the Southern Lines of Levelling. Dehra Dün, 1910. Price Rs. 5.

Fol. XIXB-Bench Marks on the Nortliern Lines of Levelling. Dehra Dūn, 1910. Price Rs. 5.

PART III.—HISTORICAL AND GENERAL REPORTS

Memoirs.

1. A Memoir on the Indian Surveys, by C. R. Markham, India Office, London, 1871.

Price Rs. 5.
2. A Memoir on the Indian Surveys. (Second Edition), by C. R, Markham, c.b., f.r.s., India Office, London, 1878.

Price Rs. 5-8.
3. Abstract of the Reports of the Surveys and of other Geographical operations in India, 1869-78, by C. R. Markham and C. E. D. Black, India Office, London. Published annually between 1871 and 1879. (Out of print).
4. A Memoir on the Indian Surveys, 1875-1890, by C. E. D. Black, India Office, London, 1891.

Price Rs. 5-8.
"Notes of the Survey of India" are issued monthly. Price As 2.

Annual and Special Reports.

Reports of the Revenue Branch-1851.1877. (Out of print).
Ditto Topographical Branch-1860-1877. (Out of print),
Ditto Trigonometrical Branch - 1861.1878.-(1861.71, out of print). Price Rs. 2.
In 1878 the three branches were amalgamated. and from that date onwards annual reports in single volumes for the whole department, were published as follows:-

From 1900 onwards the Report was issued annually in the form of a condensed statement known as (a) the "General Report" supplemented by fuller reports, which were called (b) "Extracts from Narrative Reports" "p to 1909. and since then until 1921 have been styled (c) "Records of the Surves of India".

Annual Reports \&c.-(Continued).

From 1922 the annual reports are published in three separate volumes of octavo size, viz., (a) General Report which is confined to reporting the Survey operations of the ordinary field parties and detachments with only brief abstracts of Geodetic operations, Map Publication and Office work. Published numually Price 1922-25 Rs. 2, from 1925 Re. 1. (d) Map Publication and 0ffice Work report which contains all the Index Maps showing the Progress of Map Publication on all scales, with reports on publication and issue. Published amually beginning with year 1924. Price Re. 1. (e) Geodetic Report which includes full details of all scientific work of the Geodetic Branch, Survey of India excluding the work of the Dehra Drawing Office and Publication Office. Vol. I of this series covers a period of three years 1922-25. Price Rs. 6. Subsequent volumes will be published annually. 'I'here will be in addition occasional Records volumes.

These fuller reports are available as follows:-

(b) Extracts Volumes.

1900.01-Recent Improvements in Photo-Zincography. G. 'T. Trian. gulation in Upper Burma. Latitude Operations. Experimental Base Measurement with Jäderin A pparatus. Magnetic Survey. Tidal and Level. ling. 'Topography in Upper Burma. Calcutta, 1903. (Out of print).
1901.02-G.T. Triangulation in Upper Burma. Latitude Operations. Magnetic survey. Tidal and Levelling. Topography in Upper Burma. Topography in Sind. Topography in the Punjab. Calcutta, 1904 (Out of print).

1902-03-Principal Triangulation in Upper Burma. Topography in Upper Burma. Topography in Shan States. Survey of Sāmblar Lake. Latitude Operations. Tidal and Levelling. Magnetic Survey. Introduction of the Contract System of Payment in Craverse Surveys. 'Traversing with the Subtense Bar. Compilation and Reproduction of Clhāna Maps. Calcutta, 1905. Price Rs. 1.8.

1903-04-Magnetic Survey. Pendulum. Tidal and Levelling. Astronomical Azimuths. Utilization of old 'lraverse Data for Modern Surveys in the United Provinces. Identification of Snow Peaks in Nepàl. Topographical Surveys in Sind. Notes on town and Municipal Surveys. Notes on Riverain Surveys in the Punjab. Calcutta, $1906 . \quad$ Price Rs. 1-8.

1904-0:-Magnetic Survey. Pendulum Operations. T'idal and Levelling. Triangulation in Baluchistān. Survey Operations with the Somaliland lield lorce. Calcutta, 1907.

Price Rs. 1-8.
1005-06-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Topography in Shan States Cilcutta, $1908 . \quad$ Price Rs 1-8.

1906-07 - Magnetic Survey. Pendulum Operations. Tidal and Levelling. Triangulation in Baluchistān. Astronomical Latitudes. 'Topography in Shan States. Calcutta, 1909. Price Rs. 1-8.

1907-08-Magnetic Survey. Tidal and Levelling. Astronomical Latitudes. Pendulum Operations. 'Topography in Shan States. Calcutta, 1910. Price Rs. 1-8.

1908-09-Magnetic Survey Tidal and Levelling Pendulum Operations. I'riaugulation. Calcutta, 1911. Price Rs. 1-8.

Annual Reports \&xc--(Continued).

(c) Records of the Survey of India.

Vol. I-1909.10 -'Copographical Survey. Triangulation. Tidal and Level. ling Operations. Geodetic Survey (Astronomical latitudes and pendulum observations). Maynetic Survey. Calcuita. 1912. Price Rs. 4.
Vol. II-1910-11-Topographical Surveg. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Surveg. Calcutta, 1912.

Price Re. 4.
Vol. III-1911-12-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Survey. Calcutta, $1913 . \quad$ Price Rs. 4.
Vol. IV-1911-13-Explorations on the North-East Frontier-North Burma, Mishmi, Abor and Miri Surveys. Calcutta, 1914. Price Rs. 4.
Vol. V-1912-13-Topographical Surveg. Triangulation. Tidal and Level. ling Operations. Geodetic Survey. Mannetic Survey. Note on the relationahip of the Himãlayas to the Indo-Gaugetic Plain. Calcutta, 1914.

Price Rs. 4.
Vol. VI-1912-13-Link connecting the Triangulations of India and Russia. Dehra Dūn, 1914

Price Re. 4.
Vol. VII-1913.14-Topngraphical Survey. Triangulation. Tidal and Level. ling Operations. Geodetic Survey. Mingnetic Survey (Aunual report and Government Committee's report). Note on Scales and cost rates of Town plans. Calcutta, 1915. Price Rs. 4.
Vol. VIII- $\left\{\begin{array}{l}\text { 1865-79 Part II } \\ \text { 1879.92 Part II }\end{array}\right\}$ Explorations in Tibet and neighbouring regions. Dehra Dū॥, $1915 . \quad$ Price of each part Re. 4.
Vol. VIII (A)-1914-Erplorations in the Eastern Kara-koram and the Upper Yärkand Valley, by Lt.Colunel H. Wood, r.e. Dehra Ilün, 1922.

Price Re. 3.
Vol. IX-1914-1:-Topographical Survey. Triangulation. Tidal and Levelliny Operations. Magnetic Survey. Criterion of strength of Inding Geodetic Triansulation. A traverse signal for City Surveys. "The plains of Northern India and their relationship to the Himalaya Mountains" an address by Colonel S.G. Burrard, f.rs. Report on T'urco-Persian Frontier Commission. C:ilcutta, 1916.

Frice Rs. 4.
Vol X-1915-16-Tupogranhical Surrey. Tidal and Levelling Operations. Magnetic Survey. Mechanical Integrator for calculating Atractions (illustrated). Traverne Survey of the bundary of Imperial Dellii. Dehrn Dūn, 1917. Price Rs. 4.
Vol. XI-1916.17-Topographical Survey. Triangulation-use of high treatle for atations and 100 -feet mast aignals. Tidnl and Levelling Operatims. Magnetic Survey. Note on Basevi's Pendulum Operations at Morê. Photo-Litho Offee-New method of preparing Laver plates-Developmentand Improvements in preparing Tint-plates. Dehra Dūn, 1918.

$$
\text { Proce Rs. } 4 .
$$

Vol. XII-Notes n" Surrey of India Maps and the modern development of Indian Cartography, by Lt..Colonel W.M. Coldstream, r.E., Superintendent, Map Publication. Culcutta, 1919. Price Rs. 3.

Annual Reports \&cc--(Continued).
Fol. XIII-1917-18-Topographical Survey. Tidal and Levelling Opera. tions. Magnetic Survey. Photo-Litho office-the Powder Process. Problem of the Himälayan and Gangetic Trough-Review by Dr. A. Morley Davies. Dehra Dūn, $1919 . \quad$ Prıce Rs. 4.
Yol. XIV-1918-19-Topographical Survey. Tidal and Levelling Operations. Levelling in Mesopotamia. Magnetic Survey. Dehra Dūn, 1920.

Price Rs 4.
Vol. XV-1919-20-Topographical Survey. Tidal work. Levelling-proposed new level net. Magnetic Survey. The Earth's Axes and Figure, by J. de Graaff Hunter (a paper read at the R.A.S. Geophysical Meetingi, Keport on the expedition to Kamet. Note on the Topography of the Nun Kun Massif in Ladākh. Dehra Dūn, 1921.

Price Rs. 4.
Vol. XVI-1920-21-Topographical Survey. Tidal work. Levelling and Magnetic Survey. High Climbs in the Himalaya prior to the Everest Expedition. Mt. Everest Survey Detachment Report, 1921. 'Iraverse surveg of Allahābād city. Settlement of Boundary between Mysore and South Kanara. Dehra \|ūn, 1922.

Price Re. 4.
Fol. XVII-1023-Memoir on Maps of Chinese Turkistān and Kansu from the Surveys made during Sir A. Stein's Explorations, 1900-01, 1906-08, 1913-15. Dehra Dūn, 1923. Price Rs. 12.
Fol. XVIII-1921-22—Topographical Survey. Tidal work. Levelling and Mngnetic Survey. Traverse Survey of Allahābād city. Settlement of Boundary between Mysore and south Kanara. Notes on Revision Survey in the neighbourhood of Poona. Dehra Dūn, 1923.

Price Re. 4.
Fol. XIX-1001.20-The Magnetic Survey, by Lt.-Colonel R. H. Thomas, d.s.o., r.E., and F. C.J. Bond, v.d. Dehra Dū̀, 1925.

Price Rs. 4
Vol. XX-1914-20_The War Record. Dehra Dūn, 1925 Price Rs 3.
Val. XXI-1929-23-24-I. Air Survey in the Irrawaddy Delta 1923-24, by Major C. G. Lewis, r.E., and
II. Reconnaissance Survey in Bhutan and South Tibet 1922, by Captain H. K. C. Meade, r.A. Dehra Dūn, 1925.

Price Rs. 1-8.
Vol. XXII-1926-1ixploration of the Shaksgam Valley and Aghil Ranges, 1926, by Major K. Mason, m.c., r.e. Delıra Dūn, 1928.

Price Rs. ${ }^{3}$
Fol. XXIII-1926-30-Report on No. 24 Party (Sind Rectangulation). (In the press)
(e) Gendetic Reports.

Vol. I-1929-25-Computations and Research. Tidal work. Time and Magnetic observations. Latitude and Pendulum observations in Bihār, Assam and Kashmir. Levelling. Lecture on "The height of Mount Everestand other Peaks". Delra IUūn, 1928. Price Rs. 6.
Vol. II-1925-26-Computations and Research. Tidal work. Time and Mannetic observations. Preparations for the International Longitude Project. Triangulation Levelling. Investigation of the behaviour of tree bench-marks in India. Delna l)ūn, 1928.

Price Rs. ${ }^{\circ}$.

Annual Reports \&c.-(Concluded).

Vol. III-1926-27-The International Longitude Project. Computationg and Publication of data. Observatories. 'lides. Gravity and deviation of the vertical. Triangulation. Levelling. He. search and 'Technical Notes reqarding Personal Equation Apparatus and the height of Mount Everest. Dehra Dūn, 1929.

Price R8, 3.
Vol. IV-1927.28_Computations and Publication of data. Observatories. Tides. Gravity and deviation of the vertical. Triangulation. Levelling. Dehra Dūn, 1929.

Price Re. 3.
Vol. V-1928-29—Computations and Publication of data. Observatories. Tides. Gravity and deviation of the vertical. Triangulation. Levelling. Research and Technical Notes. Dehra Dūn, 1930.

Price Rs, 3 .
Vol, VI-1929-30-Computation and Publication of data. Observatories. Tides. Gravity. Triangulation. Levelling. Research and Technical notes. Dehra Dūn, $1931 . \quad$ Price Rs. 3.
Vol. VII-1930-31-Computations and Publication of data. Observatories. Tides. Deviation of the vertical. Gravity. Triangulation and Base Measurement. Levelling. The Magnetic Survey. Dehra Dūn, 1932.

Price Rs. 3.

PART IV.-CATALOGUES AND INSTRUCTIONS

Departmental Orders.

From 1878 to 1885 the Surveyor General's orders were all issued as "Circular Orders". Since then they have been classified as follows:From 1885 to 1904 as $\left\{\begin{array}{l}\text { 1-Government of India Orders (called "Circular } \\ \text { Orders" up to 1898). } \\ \text { 2-Departmental Orders (Administrative) } \\ \text { 3-Departmental Orders (Professional) }\end{array}\right.$

In 1904 the various orders issued since 1878 were reclassified as follows:Number to date.
1.—Government of India Orders. - 853
2.-Circular Orders (Administrative).- 427
3.-Circular Oriers (Professional).- 196
4.-Departmental Orders (appointments, promotions, transfers etc.)

These are numbered serially and had reached the above numbers by September 1931. Government of India Orders and Circular Oriders (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orders (Professional) are gradually incorporatad in the Survey Handbooks. Besides the above, temporary orders have been issued since 1910 in the form of "Circular Memos". These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are available as follows :-

1. *Government of India Orders (Departmental) 1878-1903.-

,	Calcutta, 1904-1908.-Calcutta, (Out of	$\begin{array}{r} 1904 . \\ \text { 1909. } \\ \text { print). } \end{array}$
	1909-1913.-Calcutta,	1915.
,	1914-1918.-Calcutta,	1920.
	1919.1924. - Dehra Dūn	1929.

Departmental Orders.-(Concluded).

2. *Circular Orders (Administrative) 1878-1903. -Calcutta, 1904. " \quad, \quad 1904-1908.-Calcutta, 1909.
" \quad 1909-1913.-Calcutta, 1915.
" " 1914-1918.-Calcutta, 1920.
", ", 1919-1924.—Dehra Dūn, 1926.
3. * Regulations on the subject of Language Examinations for Officers of the Survey of India. Calcutta, 1914.
4. * Map Publication Orders 1908-1914 (Superintendent, Map

Publication's Orders.)-Calcutta, 1914.
5. Specimens of papers set at Examinations for the Class II Service.—Dehı'a Dūn, 1927 \& 1929. Price Re. 1 per year.

Catalogues and Lists.

1. Catalogue of Maps published by the Survey of India. Calcutta, 1931.

Price Re, 1.
Lists of new maps published during each month appear in the monthly NOTES OF THE SURVEY OF INDIA. These monthly lists are also issued separately.
2. Catalogue of Maps of Burma.

Calcutta, 1925.
Price As. 8.
3. Catalogue of Maps of Cantonments and Military stations. Dehra Dūn, 1927.

Price As. 8.
4. Catalogue of Books in the headquarters Library, Calcutta, 1901. (Out of print).
5. Catalogue of Scientific Books and Subjects in the Library of the Trigonometrical Survey Office. Dehra Dūn, 190S. Price Re. 1.
6. Classified Catalogue of the I'rigonometrical Survey Library. Dehra Dūn, 1921 . Gratis.
7. Green Lists-Part I-List of Officers in the Survey of India (annually to date 1st January), Calcutta. Price Rs.1.2. Part II-History of Services of Officers in the Survey of India (amnually to date 1st July), Calcutta. Price Rs.1-2.
8 Blue Lists-Ministerial and Lower Subordinate Establishments of the Survey of India.
Part I--Meadquarters and Dehra Dūn offices (published amually to date 1st April), Calcutta. Price Rs. 6-6.
Part, I I-Circles and parties (published amnually to
dite 1st January), Calcutta. Price Rs. 8-10.
9. List of the Publication of the Survey of India (published annually)

Dehra Dūn.
Gratis.
10. Price List of Mathematienl Instrument Offec. Corrected up to 1st September 1927. Calcutta, 1928. Gratis.

[^36]
Tables and Star Charts.

1. Auxiliary Tables-to facilitate the calculations of the Survey of India. Fourth Edition, Dehra Dūn, 1906. (Out of print).
2. Auxiliary Tables-of the Survey of India. Fifth Edition, (revised and extended), by J. de Graaff Hunter, m.A., sc.d., f. inst. p. In parts-

Part I--Graticules of Maps, (reprinted). Dehra Dūn, 1926.
Price Re. 1.
Part II-Mathematical Tables, (reprinted with additions). Dehra Dūn, 1931.

Price Rs. 2.
Part III-Topographical Survey Tables, (reprinted with additions). Dehra Dūn, $1928 . \quad$ Price Rs. 3.
Part IV-Geodetic Tables, (A) Trriangulation Tables. Dehra Dūn, 1931.

Price Re. 1.
3. Tables for Graticules of Maps. Extracts for the use of Explorers. Dehra Dū̀, 1918.

Price As. 4.
4. * Metric Weights and Measures and other tables. Photo-Litho Office. Calcutta, 1889. (Out of print).
5. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Dün, 1886. (Out of print).
6. Logarithmic Sines, Cosines, 'Tangents and Cotangents to 5 places of decimals. Dehra Dūn, 1915. (Out of print).
7. Common Logarithms to 5 places of decimals, 1885. (Out of print).
8. Table for determining Heights in Traversing. Dehra Dūn, 1898.

Price As. 8.
9. Tables of distances in Chains and Links corresponding to a sub. tense of 20 feet. Dehra Dūn, 1889.

Price As. 4.
10.
11.* ,",

10 feet. Calcutta, 1915.
8 feet. "
12. Field Traverse 'T'ables. First Edition. Calcutta, 1928. Price A8. 8.
13. Star Charts for latitude 20° N., by Colonel J. R. Hobday, i.s.c. Calcutta, 1904.

Price Rs. 18.
14. Star Charts for latitude 30° N., by Lt.-Colonel S. G. Burrard, a.E., f.r.s. Dehra Dūn, 1906.

Price Rs. 1-8.
15. Star Charts for latitude 15° N. Dehra Dūn, 1928. Price Rs. 2.
16. Star Charts for latitude 30° N. Dehra Dūn, 1928. Price Rs. 2.
17. Catalogue of 249 Stars for epoch 1st Jan. 1892, from observations by the Surveg, Dehra Dūn, 1893.

Price Rs. 2.
18. * Rainfall, maximum and minimum temperatures, from 1868 to 1927, recorded at the Survey Office Observatory, Dehra Dūn, 1928.
19. *Booklet of conventional signs for use on Plane-table Sections. Second Edilion, 1928.

Old Manuals.

1. A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal, and the North-Western Provinces. Compiled by Captains K. Smyth, and H. L،. Thuillier. Calcutta, 1851. (Out of print).
2. Ditto Second Edition. London, 1855. (Out of print).

> * For Departmental use only.

Old Manuals.-(Concluded).
3. A Manual of Surveying for India, detailing the mode of operations on the Trigononetrical, Topographical and Revenue Surveys of India. Compiled by Colonel H. L. Thuillier, c.s.I., f.r.s., and Lt..Col. R. Smyth. Third Edition, revised and enlarged. Calcutta, 1875. (Out of print).
4. Hand-Book, Revenue Branch. Calcutta, 1893. Price Rs. 2-8.

Survey of India Hand-Books.

1. * Hand-Book of General Instructions (in 2 vols.) Fifth Edition. 1927.
2. Hand-Book, Trigonometrical Branch, Second Edition. Calcutta, 1902. (Out of print).
3. Hand-Book of Trigonometrical Instructions.-Third Edition. Parts in pamphlet forms-

Part I—Geodetic Triangulation. First Edition. Dehra Dūn, 1931. Price Rs. 2-8.

Part V-The Tides. First Edition, revised, Dehra Dūn, 1926. Price Rs. 2.
Part VI-Levelling. Second Editiou, revised, Dehra Dūn, 1928. Price Re. 1.
4. Hand-Book, Topographical Branch.-Third Edition. Calcutta, 1905. (Out of print).
5. Hand-Book of Topography.-Fourth Edition. Calcutta, 1911. Chapters, in pampblet forms-

Chapter I-Introductory,-reprinted with additions, 1921.
Price As. 8.
, II-Constitution and Organization of a Survey Party.
—reprinted with additions, 1923. Price As. 8.
III-Triangulation and its Computation.-revised 1930.
Price Re. 1.
IV-Theodolite Traversing.-Third Edition, 1927.
Price Re. 1.
V-Plane-tabling.-Third Edition, 1926. Price Re. 1.
VI-Fair Mapping.-reprinted with additions and revised, (Sixth Edition) $1928 . \quad$ Price Re. 1.
VII-Trans-Frontier Reconnaissance.-Third Edition, $1924 . \quad$ Price As. 8.
VIII-Surveys in War.-Second Edition, 1930. Price Re. 1. IX—Forest Surveys and Maps. 1925. Price As. 8.
X-Map Reproduction.-Third Edition, 1928.
Price As. 8.
XI-Geographical Maps.-Second Edition, 1926.
Price As. 8.
6. *Photo-Litho Ofllce, Notes on Organization, Meiloods aud Processes, by Major W. ©. Hedley, r.e. Third Edition. Calcutta, 1924.
7. The Keproduction (for the guidance of other Departments) of Maps, Plans, Photographs, Dingrams, and Line Illostrations. Calcutta, 1914.

Price Rs. 3 .

[^37]* For Departmental use ouly

Notes and Instructions.

Drawing and paper.

1. *Notes on Printing Papers suitable for Maps, and on Whatman Drawing Paper, by Major W. M. Coldstream, r.e. Calcutta, 1911.

Printing and Field Litho processes.

(Out of print).
2. *Report on Rubber Offset Printing for Maps, by Major W. M. Coldstream, r.e. Calcutta, 1911.
3. "Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for a small section. Compiled in the Photo and Litho Office, Survey of India. Calcutta, 1913.
(Out of print).
4. *Notes on some of the Methods of Map Reproduction suitable for the Field with appendix-Suggested Equipment l'ables for the Light Field Litho Press (experimental), by Lieut. A. A. Chase, r.e. Calcuttn, 1911.
5. *Report on a trial of the equipment of the 1st (Prince of Wales' Own) Sappers and Miners, for reproducing maps in the field, by Lieut. A. A. Chase, r.e. Calcutta, 1912. (Out of print).

Base Lines and Magnetic.

6. *Notes on use of the Jäderin Base line Apparatus. Dehra Dün, 1904. (Out of print).
7. *Miscellaneous Papers relating to the Measurement of Geodetic Bases by Jäderin Invar Apparatus. Dehra Dūn, 1912.
8. *Instructions for talsing Magnetic Observations, by J. Eccles, M.A. Dehra Dūn, 1896. (Out of print).
9. Rectangular Coordinates-On a Simplification of the Computations relating to, by J. Eccles, m.a. Dehra Dūn, $1911 . \quad$ Price Re. 1.
10. *For Explorers-Notes on the use of Thermometers, Barometers and Hypsometers with Tables for the Computation of Heights, by J. de Graaff Hunter, m.a. Dehra Dūn, 1911. (Out of print).
11. *Amended Instructions for the Survey and Mapping of Town Guide Maps. August 1919.
12. *Notes on boundary ribands on maps of the Survey of India, by Major F. Fraser Hunter, d.s.o., I.A, Calcutta, 1922.
13. *Notes on the map of Arabia and the Persian Gulf, with a general index of place names on the map, 1905-08, by Captain F. Fraser Hunter, I.d. Calcutta, 1910.
14. Accounts Pamphlet.-Notes on accounts for field units. Dehra Dūn, 1928. Price Re. 1 .

PART V.-MISCELLANEOUS PAPERS

Unclassified Papers.

Oeography.

1. A Sketch of the Geography and Geology of the Himālaya Mountains and Tibet (in four parts), by Colonels. G. Burrard, r.E., rin.s., Supdt., Trigonometrical Surveys, and IL. H. Layden, B.A., F.G.S., Supdt., Geological Survey of India. Calcutta, 1907.08.

Part I.-The High Peaks of Asia.
" II.-The Principal Mountain Ranges of Asia. Price Rs. 2
, lII.-The Rivers of the IImāalaya and Tibet. \quad (per part.
" IV.-The Geology of the Fimãlaga.

Unclassified Papers--(Continued).

2. *Report on the Identification and Nomenclature of the Himalayan Peaks as seen from Kātmāndu, Nepāl, by Captain H. Wood, r.e. Calcutta, 1904.
3. Routes in the Western-Himãlaya, Kashmir etc., by Lt. Colonel T. G. Montgomerie, r.E., f.r.s., f.r.g.s. Dehra Dūn, 1909. (Out of print).
4. Routes in the Western-Himālaya, Kashmir etc. with which are included Montgomerie's Routes. Volume I. Pūnch, Kashmir and Ladākh, by Major Mason, m.c., r.e., Second Edition, Calcutta, 1929. Price Rs. 6 .

Exploration.

1. *Account of the Survey Operations in connection with the Mission to Yārkand and Kashgar in 1873-74, by Captain Henry Trotter, r.e. Calcutta, 1875. (Out of print).
2. Report on the Trans-Himálayan Explorations during 1869. (Out of print).
3. Report on the Trans-Himālayan Explorations during 1870. Dehra Dũo, 1871. (Out of print).
4. Report on the Trans-Himālayan Explorations during 1878. Culcutta, 1880. (Out of print).
5. The where is it-Reference index showing geographical position of all important localities in INDIA and adjacent countries, in four parts. Calcutta, 1928.

Part I-Place names.-Cities, towns, and other sites.
II-Railway stations.-Complete list, 1928.
$\left.\begin{array}{l}\text { " III-Localities.-Districts, States, Tribes etc. } \\ " \text { IV—Physical.-Ranges, passes, peaks, glaciers, }\end{array}\right\} \begin{gathered}\text { Price } \\ \text { As. } 12 .\end{gathered}$
$\left.\begin{array}{l}\text { " III-Localities.-Districts, States, Tribes etc. } \\ " \text { IV—Physical.-Ranges, passes, peaks, glaciers, }\end{array}\right\} \begin{gathered}\text { Price } \\ \text { As. } 12 .\end{gathered}$
$\left.\begin{array}{l}\text { " III-Localities.-Districts, States, Tribes etc. } \\ " \text { IV-Physical.-Ranges, passes, peaks, glaciers, }\end{array}\right\} \begin{gathered}\text { Price } \\ \text { As. } 12 .\end{gathered}$ rivers, cannls, lakes, bays, capes, islands etc.
6. Glossary of Vernacular Terms used in Survey of India Maps. Calcutta, 1931.

Price As. 5.

Special Reports.

1. *Report on the Mussoorie and Landour, Kumaun and Garhwāl, Känīrhet and Kosi Valley Survers, extended to Peshāwar and Kāghān Priangulation during 1869-70, by Major T. G. Montgomerie, r.e. (Out of print).
2. Report on the Recent Determination of the Longitude of Madras, by Captain S. G. Burrard, r.e. Calcutta, 1897. (Out of print).
3. *Report on the Observations of the Total Solar Eelipse of 6th April, 1875 at Camorta, Nicobar Islands, by Captain J. Waterhouse. Calcutta, 1875. (Out of print).
4. *The Total Solar Eclipse, 22nd January, 1898. Debra Dūu, 1898.
(1) Report on the observations at Dumrann.
(2) Report on the observations at Pulgaon.
(3) Report on the observations at Sahdol.
5. *Report on Local Attraction in India, 1893-94, by Captain S. G. Burrard, n.e. Calcutta, 1895. (Out of print).
6. *Report on the Trigonometrical Results of the Earthquake in Assam, by Captain S. G. Burrard, a.e. Calcutta, 1898. (Out of print).
7. *Notes on the Topographical Survey of the $1 / 50,000$ sheets of Algeria by the Topographical Section of the "Service Geographique de l'Armēe", by Captain W. M. Coldstream, r.e. Calcutta, 1906.

Unclassified Papers.-(Concluded).

Special Keports.

8. *'The Simla Estates Boundary Survey on the scale of 50 feet to 1 inch, by Captain E. A. Tandy, r.e. Calcutta, 1906.
9. *A note on the stage reached by the Geodetic Operations of the Survey of India in 1920, by Lt.-Colonel H.McC. Cowie, r.e. The Magnetic Survey of India, by Major R. H. Thomas, d.s.o., r.e. and a note on the present levelling policy, by Major K. Mason, m.c., r.e. Dehra Dūn, 1922. (Out of print).

Geodesy.

1. Notes on the Theory of Errors of Observation, by J. Eccles, m.d. Dehra Dūn, 1903. Price ds. 8.
2. ${ }^{*}$ Note on a Change of the Axes of the Terrestrial Spheroid in relation to the Triangulation of the G.T. Survey of India, by J. de Graaff Hunter, m.A. Dehra Dūn. (Out of print), now incorporated in Professional Paper No. 16.
3. Report on the Treatment, and use of Invar in measuring Geodetic Bases. by Captain H. H. Turner, r.e. London, 1907.

Price As. 8.

Projections.

1. On the projection used for the General Maps of India. Dehra Dūn, 1903. (Out of print).
2. *On the deformation resulting from the method of constructing the International Atlas of the World on the scale of one to one million, by Ch. Lallemand. Translated by J. Eccles, m.a., together with tables for the projection of $1 / \mathbf{M}$ Maps on the International system. Dehra Dūn, 1912. (Out of print).

Mapping.

1. *A Nite on the different methods by which hills can be represent. ed upon maps, by Colonel S. G. Burrard, c.s.i., r.e., f.r.f., Surveyor General of India. Simla, 1912.
2. *A Note on the representation of hills, by Major C. L. Robertoon, c.m.g., r.e. Dehra Dūn, 1912.
3. *A Note on the representation of hills on the Maps of India, by Major F. W. Pirrie, i.a. Dehra Dūn, 1912.
4. A consideration of the Contour intervals, and Colour Scales, best suited to Indian 1/M maps, by Captain M.O'C. Tandy, n.E. Calcutta, 1913. (Out of print).

Professional Papers.

No. 1-Projection-On the Projection for a Map of India, and adjacent Countries, on the scale of $1: 1,000,000$, by Colonel St. G. C. Gore, r.E. Second Edition. Dehra Dūn, 1903.

No. 2--*Base Lines-Method of measuring Geodetic Bases by means of Metallic Wires, by M. Jïderin. (Translated from Memoires Preesentès par Divers. Savanta à l' Académie des Sciences de l' Institute de France). Dehra Dūn, 1 s99. (Out of print).

No. 3-Base Lines-Method of measuring Geodetic Bases by means of Colby's Compensated Bars, compiled by Lieut. H. McC. Cowie, r.Er Dehra Dūn, 1900. (Out of print).

[^38]
Professional Papers.-(Continued).

No. 4-Spirit levels-Notes on the Calibration of Levels, by Lieut, E. A. T'andy, r.e. Dehra Dūn, 1900. (Out of print).

No. 5-Geodesy-The Attraction of the Himãlaya Mountains upon the Plumb-Line in India, considerations of recent data, by Major S. G. Burrard, r.e. Second Edition, Dehra Dūn, 1901. Price Rs. 2.

No. 6-Base Lines-A ccount of a Determination of the Coefficients of Expansion of the Wires of the Jäderin Base Line Apparatus, by Captain G. P. Lenox-Conyngham, r.e. Dehra Dūn, 1902. (Out of print).

No. 7-*Miscellaneous. Calcutta, $1903 . \quad$ Price Re. 1.
(1) On the values of Longitude employed in maps of the Survey of India.
(2) Levelling across the Gauges at Dāmuisdia.
(3) Experiment to test the increase in the length of a levelling staff due to moisture and temperature.
(4) Description of a Sun-dial designed for use with tide-gauges.
(5) Nickel-steel alloys and their application to Geodesy. (Translated from the French).
(6) Theory of electric projectors. (Translated from the French).

No. 8-Magnetic-Experiments made to determine the temperature coefficients of Watson's Magnetographs, by Captain H.A. Denholm Fraser, i.e. Calcutta, 1905.

Price Re. 1 .
No. 9-Geodesy-An Account of the Scientific work of the Survey of India. and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Survey Committee assembled in 1905, by Lt.-Colonel S. G. Burrard, r.e., f.r.s. Calcutta, 1905. Price Re. 1.
N_{o}. 10-Pendulums-The Pendulum Operations in India, 1903-1907, by Major G. P. Lenox-Conyngham, r.e. Dehra Dūn, 1908. Price Rs. 2-8.

No 11-Refraction-Observations of A tmospheric Refraction, 1905-09, by H. G. Shaw, Survey of India. Dehra Dūn, 1911. (Out of print).

No. 12-Geodesy-On the Origin of the Himalaya Mountains. by Colonel S. G. Burrard, c.s.i., r.e., f.r.s. Calculta, 1912. Price Re. 1.

No. 13-Isostasy-Invesligation of the Theory of Isostasy in India, by Major H. L. Crosthwait, r.e. Dehra Dūn, 1912. (Out of print).

No. 14-Refraction-Formula tor Atmospheric Refraction, and their application to 'Terrestrial Refraction and Geodesy, by J. de Granff Hunter, m.n. Dehra Dūn, $1913 . \quad$ Price Rs. \%.

No. 15-Pendulums-The Pendulum Operations in India and Burma, 1908-13, by Captain IL. J. Couchman, n.E. Dchra Dūn, 1915. Price Rs. 2-8.

No. 16—Geodesy-The Earth's Axes and Iriangulation, by J. de Graaff Hunter, ma. Dehra Dūn, 1918.

Price Rs. 4.
No. 17-Isostasy-Incestigations of Isostasy in Himālayan and neighbouring regions by Colonel Sir' S. G. Burrard, $\boldsymbol{K} . \mathrm{c}$ s.i., r.e., f.r.s. Dehra Dün, 1918. (Out of print).

No. 18-Isostasy-A criticism of Mr. R. D. Oldham's memoir "The structure of the Himalayas and of the Gangetic Plain", by Lt.-Colonel H. McC. Cowie, r.e. Dehra Dūn, 1921.

[^39]
Professional Papers.-(Concluded).

No. 19-Aerial Photography-Experiments in Aeroplane Photo Sur. veying, by Major C. (G. Lewis, r.f., and Crptain H. G. Salmond, (Late n.A.f.), Dehra Dūn, 1920.

Price Rs. 1.8.
No. 20-Air Survey-Reconnaissance Survey from Aircraft, by Lt.-Colonel (7. A. Beazeley, d.s.o., r.e. Dehra Dün, 1927. Price Rs. 1-8.

No. 21-Rectangulation-Irrigatiou and Settlement Surveys 1926, by Major J. D. Campbell, d.s.o., r.e. Dehra Dūn 1927. Price Rs. 1-8.

No. 22-Levelling-'lhree Sources of Error in Precise Levelling, by Captain G. Bomford, r.e. Dehra Dūn, 1929 . Price R. 1.8.

No. 23-* Air Survey-Air Survey of Wazīristan 1923 to 1928, by Captain G. F. Heaney, r.e. Dehra Dū̃, $1928 . \quad$ Price As. 8.

No. 24-Air Survey-Notes on Air Survey in India, by Major W. J. Norman, м.c.. r.e. Dehra Dūn, $1929 . \quad$ Price Re. 1.8. No. 25-(thaciers-The Representation of Glaciated Regions on maps of the Survey of India, by Major Kenneth Mason, m.c., r.e. Dehra Dūn, 1929. Price As, 8 .
No. 26-Geography-Mount Everest and its Tibetan Names, by Colonel Sir S. G. Burrard, k.c.s.i., f.r.s. Dehra Dūn, 1931. Price As 8.
No. 27-Gravity-Gravity Anomalies and the Structure of the Earth's Crust, by Major E. A Glemie, d.s.o , r.e. Dehra Dūn, 1932. Price Rs. 1-8.

Departmental Papers Series. \dagger

No. 1-T'Tye-A consideration of the most suitable forms of type for use on maps, by Captain M. O'C. Tandy. r.e. Dehra Dūn, 1913 .

No. 2-Symbols-A review of the Boundary Symbols used on the mapa of various countries, by Captain M.O'C. Tandy, n.e. Dehra Dūn, 1913.

No. 3-Maps-Extract from "The New Map of Italy, Scale 1: $100,000^{\prime \prime}$, by Luigi Giannitrapani. Translated from the Italian by Major W. M. Coldsiream, r.e. Dehra Dūn, 1913.

No. t-Town Surveys-A report on the practice of Town Surveys in the United Kingdom and its application to India, by Major C. L. Robertson, c.m.a., r.e Dehra Dūn, 1913.

No. 5-Sterco-plotter-The Thompson Stereo-plotter and its use, with notes on the field work, by Lieut. K. Mason, r.e. Dehra Dün, 1913.

No. G-L Levelling-Levelling of High Precision, by Ch. Lallemand. Translated from the Freuch by J. de Graaff Hunter, m.a. Dehra Dün, 1914.

No. 7-Standard Bars—Bar Comparisons of 1907-08, by Major H. McC. Cowie, r.e. Dehra Dūn, 1915.

No. y-Ifelio-Zincography-Report on Rubber Off-set Flat bed Machine Printing, by Captain S. W. Sackville Hamilton, u.e. Calcutta, 1915.

No. 9-Stereo-Auto.Plotting - A translation of Paul Corbin's French Stérén Autorrammétrie, by Lt.-Colonel H. McC. Cowie, r.E. Dehra Dūn, 1922.

No. 10-Base Lines-A Booklet of Instructions with full descriptions and tahles for the Hunler Short Base, First Edition compiled by Major (I. M Thompson, I.A. Dehra 1)ūn, 1928. Second Edition Compiled by H. C. Panerjea, b.a Johra Jū̆n, 1931.

No. 11- Aravity and Isostasy-Investigations regarding Gravity and Isostasy by W. Heiskanen (Translated by V. Pelts Esq Revised and completed by Major C. M. Thompson, iA.) Dehra Dūn, 1928.

[^40]
Departmental Papers Series.*-(Concluded).

No 12-Geodesy-Geodesy, by J. de Graaff Hunter, m.A., sc.d., r. inst.p. Dehra Dūn, 1929.

No. 13-Spherical Trigonometry and Astronomy-Notes on Spherical Trigonometry, and Astronomy etc., by Lt.-Colonel C. M. Thompan, r.A. Dehra Dūn, 1929.

No. 14-Wild Theodolite-Instructions for the use of the Wild Universal Theodolite by Captain D. R. Crone, r.e., and the Wild Photo-Theodolite by Lt.-Colonel C. G. Lewis, o.b.E., r.e. Dehra Dūn, 1932.

Professional Forms.

A large number of forms for the record and reduction of Survey Operations are stocked at Dehra Dūn.
List of more important contributions ho the Officers of the Survey of India to various extra-departmental publications and related articles.

1. †India's Contribution to Geodesy, by General J.T. Walker, r.e., c.b., f.r.s., Ll.d. (Philosophical Transactions, Royal Society, Series A, Volume 186, 1895).
2. HOn the Intensity and Direction of the Force of Gravity in India, by Lt.-Colonel S. G. Burrard, r.e., f.r.s. (Philosophical Traveactions, Royal Society, Series A, Volume 205, pages 289-318, 1905).
3. \ddagger A climb on Kolahoi, by Lieut. Kenneth Mason, R.E. (Royal Engineers Journal, November 1910).
4. \dagger On the effect of the Gangetic Alluvium on the Plumb-line in Northern India, by K. D. Oldham, f.n.s. (Proceedings of the Royal Society, Series A, Volume 90, pages 32-40, 1914).
5. Hon the origin of the Indo. Gangetic trough, commonly called the Himālayan Foredeep, by Colonel Sir S. G. Burrard, w.c.s.I., r.e., f.r.s. (Proceedings of the Royal Society, Series A, Volume 91, pages 220-238, 1915).
6. §Three comprehensive articles on "Comparators for the Indian Government" fron a report by Major H. McC. Cowie, n.e. (Engineering, Aug. 20, Aug. 27, Sept. 3, 1915).
7. ||Identification of Peaks in the Himalaya with notes, by Colonel Sir S. G. Burrard, к.c.s.i, n.e., f.n.s. (Geographical Journal, September 1918).
8. \|Geological interpretations of Geodetic Results, by Colonel Sir S. G. Burrard, к.c.s.i., н.e., f.f.s. (Geographical Journal, October 1918).
9. \|War Surveys in Mesopotamia, by Colonel F. W. Pirrie, c.m.g., I.A. (Geographical Journal, December 1918).
10. ॥Air Photography in Archæology, by Lt.-Colonel G. A. Beazeley, d.s.o., R.e. (Geograplical Journal, May 1919).
[^41]
List of more important contributions by the Officers

of the Surver of India \&c. \&c.-(Continued).

11. *Mapping from Air Photographs, by Lt.-Colonel M. N. MacLeod r.e. (Geographical Journal, June 1919).
12. *Reminiscences of the Map of Arabia and Persian Gulf, by Lt.-Colonel F. F. Hunter, d s.o., I.A. (Geographical Journal, December 1919).
13. *Central Kurdistan, by Major K. Mason, m.c., r.e. (Geographical Journal, December 1919).
14. *Surveys in Mesopotamia during the War, by Lt.Colonel G. A. Beazeley, d.s.o., k.e. (Geographical Journal, February 1920).
15. + A lecture on the Earth's Axes and Figure, by J. de Graaff Hunter, m.a. (The Observatory, May 1920).
16. *A brief review of the evidence upon which the Theory of Isostasy has been based, by Colonel Sir S. G. Burrard, к.c.s i., r.e., f.r.s. (Geographical Journal, July 1920).
17. *A note on the topography of the Nun Kun Massif in Ladākh, by Major K. Mason, m.c., ree. (Geographical Journal, August 1920).
18. *Notes on the Canal System and Ancient Sites of Babylonia in the time of Xenophon, by Major K. Mason, m.c., r.e. (Geographical Journal, December 1920).
19. \ddagger An Exploration in South-East Tibet, by Major H. T. Morshead, d.s.o., re e. (Royal Engineers Journal, January 1921).
$20 \ddagger$ Topographical Air Survey (with plates and maps), by Lt.-Colonel G. A. Beazeley, D.s.o., R.E. (Royal Engineers Journal, February 1921).
20. \ddagger Projection of Maps.-A review of some Investigations in the Theory of Map Projections, by A. E. Young, and Colonel Sir S. G. Burpard, k.c.s.i., r.e., f.r.s. (Royal Engineers Journal, March 1921).
21. \ddagger Report on Expedition to Kamet, 1920, by Major H. T. Morshead, d.s.o., r.e. (Royal Engineers Journal, April 1921).
22. *The Circulation of the Earth's Crust, by Lt.-Colonel E. A. Tandy, re. (Geographical Journal, May 1921).
23. §Johnson's Suppressed Ascent on E 61., by Major K. Mason, м.c., н.е (Alpine Journal, November 1921).
24. *Sterengraphic Survey. The Autocartograph, by Lt.Colonel M. N. MacLend, ds.o., r.e. (Geographical Journal, April 1922).
25. †The "Canadian" photo-topographical method of Survey, by Captain and Bt. Major E.O. Wheeler, m.c., n.E. (Koyal Eugineers Journal, A pril 1922).
26. §The Survey of Mr. W. H. Johnson in the K'un Lun in 1865. by Major K Mason, m.c., r.e. (Alpine Journal, November 1922).
27. UGravity Survey, by J. de Graaff Hunter. m.a., sc.d., f.inst.p. (A Dictionary of Applied Physics, Vol. III).

* Ohtainable from the Hoyal Geographical Society, Kensington Gore, London, s.W.7.
\dagger Obtainable from Mesars. Taylor \& Francis, Red Lion Conrt. Fleet, Street, London, W.c.
\ddagger obtainalle from the Invtitution of Rogal Enginerrs, Chatham.
\$ Obtainable from Alpine Clob, 23 Savile Row, London, W. 1.
\| Obtainable from Messrs. MacMillun \& Co. Limited, St. Martin's Street, London. W.C.. Bombay, Calcutta, Madras, Melbourne.

List of more important contributions by the Offleers of the Survey of India \&c. \&c.-(Continued).
29. *Trigonometrical Heights and Atmospheric Refraction, by J. de Graaff Hunter, m.A., sc.d., f.inst.f. (A Dictionary of applied Physics, Vol. 11I).
30. Geodesy, by Colonel Sir G. P. Lenox-Conyngham, r.e., f.r.s. and J. de Graaff Hunter, M.A., sc.d., f.inst.p. (Enc. Brit. 12th Edition, Vol. XXXI, 1922).
31. tThe proposed Determination of Primary Longitudes by Inter. national Co operation, by Colonel Sir G. P. Lenox-Conyngham, r.e., f.r.s. (Geographical Journal, February 1923).
32. + Recent Developments of Air Photography.-(1) The adjustment of Air Photographs to Survey points, by Lt.-Colonel M. N. MacLeod, d.s.o., R.E. (Geographical Journal, June 1923).
33. \ddagger Mount Everest, by Major H.'T. Morshead, d.s.o., R.E. (Koyal Engineers Journal, September 1923).
34. †Kishen Singh aud the Indian Explorers, by Major K. Mason, м.с., п.е. (Geographical Journal, December 1923).

35 §Electrical registration of height of water at any time in Tidal Prediction, by J. de Graaff Hunter, M.A., se.d., f.inst. f. (Jourual of scientific lnstruments, Vol. 1, No. 8, May 1924).
36. ||Graphical methods of plotting from Air Photographs, by Lt.-Colonel L. N. F. I. King, o.b.e., b.e.
37. +The Demarcation of the Turco-Persian Boundary in 1913-14, by Colonel C. H. D. Ryder, r.e. (Geographical Jourual, September 1925).
38. Geodesy, by J. de Graaff Hunter, m.A., sc.d., f. inst. p. (Enc. Brit. 13th Editiou, New Vol. ii, 1926).
39. **The De Filippi Expedition to the Eastern Kara-koram, by B.B.D. and Colonel Sir G. P. Lenox-Couyugham, r.e., f.r.s., m.a. (Nature, 13th February 1926).
40. t'The Problem of the Shaksgam Valley, by Colonel Sir Francis Younghusband, к.c.s.i., к.c.I.e. (Geographical Journal, September 1926),

41, tThe Shaksgam Valley and Aghil Range, by Major K. Mason, m.C., e.e. (Geographical Journal, April 1927).
42. A Break-Circuit for Pendulum Clocks, by J. de Graaff Hunter, m.4., sc.d., f. inst. p. (Bulletin Géodésique No. 14, April, May, June 1927, Paris).
43. †A Graphical Discussion of the Figure of the Earth, by A. R. Hinks, c.b.e., f.e.s. (Geographical Journal, June 1927).
44. \ddagger Survey on Active Service, by Captain G. F. Heaney, ree. (Royal Engineers Journal, June 1927).
45. A Report on the (deodetic work of the Survey of India for the period 1924-27, by J, de Graiff Hunter, m.a., sc.d., f.inst. f., presented at the third meeting of the International Union of Geodesy and Geophysics, Prague, September 1927. Dehra Dūn, 1927. Price Re. 1.

[^42]
List of more important contributions by the Officers

 of the Survey of India \&c. \&c.-(Continued).46. *The Stereographic Surver of the Shaksgam, by Major K. Mason, m.c., в.e. (Geographical Journal, October 1927).
47. *Figure of the Earth: correspondence by J. de Graaff Hunter, m.A., sc.d., f.inst. p. (Geographical Journal, December 1927).
48. *Figure of the Earth : correspondence by Captain G. Bomford, n.e. (Geographical Journal, December 1927).
49. * Keply to Captain G. Bomford's letter on Figure of the Earth (No. 48 of list), by Captain G. I'. McCaw and A. R. Hinks, c.b.e., f.r.s. (Geographical Journal, December 1927).
50. Figure of the Earth-Presidential address by J. de Graaff Huuter, m.A., sc.d., f. inst.p., at the Section of Mathematics and Physics of the Fifteenth Indian Science Congress, Calcutta 1928 (Published by the Asiatic Society of Bengal, Calcutta).
51. * Note on Sir Francis Younghusband's Urdok Glacier, by Major Kenneth Mason, m.c., r.e. (Geographical Journal, March 1928).
52. \dagger Some Applications of the Geoid by J. de Graaff Hunter, m. A., sc.d., f. inst.p. (The Observatory, June 1928).
53. \ddagger The Attraction of the Himālaya, by J. de Graaff Hunter, m.a., sc.d., f. inst.p. (Himālayan Journal, Vol. I, No. 1, April 1929. pages 59-66).
54. *'The Kara-koram : Correspondence regarding the proper nomenclature of the Kara-koram Himālaya, by Colonel Sir S. G. Burrard, к.c.s.i, r.e., f.f.s., Dr. T.G. Longstaff and Major Kenneth Mason, m.c., r.e. (Geographical Journal, September 1929 and January 1930).
55. § I'he Geographical Representation of the Mountains of libet by Colonel Sir S. G. Burrard, к.c.s.i., b.E., f.r.s. (Proceedings of the Royal Society, Series A, Volume 127, 1930, pages 704-712).
56. || The Glaciers of the Kara-koram and Neighbourhood, by Major Kenneth Mason, m.c., r.e. (Records of the Geological Survey of India, Volume LXIII, part 2, 19:30, pages 214-278).
57. A Keport on the Geodetic work of the Survey of India for the period 1927-30, by J. de Graaff Hunter, m.a.. sc.d., f. inst. p, presented at the fourth meeting of the International Union of Geudesy and Geophysics, Stockholm, August 1930. Dehra Dūn, 1930. Price Rs. 1-12
58. The Indian Geoid and Gravity Anomalies by J. de Graaff Hunter, m.A., se.d., f. inst. p. and Captain G. Bomford, r.e. (Bulletin Géodésique, No. 29 Jan - Mar. 1931, pages 20, 21, Paris).
59. Coustruction of the Geoid, by J. de Graaff Hunter, m.a., sc.D. f.inst p. and Captain G. Bomford, r.e. (Bulletin Géodésique, No. 29 Jan.-Mar. 1931, pages 22-26, Paris)
[^43]
List of more important contributions by the Officers

 of the Survey of India \&c. \&c.--(Concluded).60. *'Two Notes on Short Tertiary Bases, by J. de Graaff Hunter, n.A., sc.D., f. inst. p. (Empire Survey Review No. 1, Vol. I, July 1931, pages 12-15).
61. \dagger Contribution to discussion on paper by Mr. A. R. Hinks, с.в.E., f.r.s "Some Problems of the Earth's Crust". British Association, 1931, by J. de Graaff Hunter, ma., sc.d., f.inst. p. (Geographical Journal, November 1931).
62. \ddagger, §The Hypothesis of Isostasy, by J. de Graaff Hunter, m.A., sc.d., f.inst. p. ('The Observatory, Dec. 1931 and Geophysical Supplement to Monthly Notices of the Royal Astronomical Society, Jan. 1932).
63. *Review of Captain Hotine's "Survey from the Air Photographs", by J. de Graaff Hunter, M.A., sc.d.. f. Inst. f. (Empire Survey Review No. 3, Vol. 1, Jan. 1932, pages 134-137).

[^44]

INDEX TO THE TRIAMGGUMPHLEIS
IRĀQ. PERSII

[^0]: - It ia not anggeated that the Siamese Survey were unwise to make this anamption. At thia diatanco from the origin the Indian Everest spheroid is not at all a convenient reference figure.

[^1]: In torms of the Kengtung Base, log side Loi Wan Wa - Lai Anglawne; is $5 \cdot 16$ ishini.

 In terms of the spirit-levelling to Kengtung the height of Loi Wian W : ${ }^{\text {is }}$ 6515

[^2]: - Sup Survey of India Records Volımo VI.
 + This hav been tranalated inte Finglish by Captain F.H. Gleeson, R.A.

[^3]: * Records Volume VI, page 116B.
 + By the adjective "geodetic" is here impliod triangulation of such quality as could contribute to the determination of the Earth's figure. The existing work is no doubt thoroughly adequate for the control of the topographical surveys which are based on it.

[^4]: - De Graaff Hunter, "Geodeay". Departmental Paper No. 12, pages 42-44.

[^5]: * From N.P.L. Certificate. 1914, the coefficient of expansion of the nickelsteel bar at $24^{\circ} \mathrm{C}$ is derluced as $+\cdot 030 \mathrm{~mm}$ per 4 m per ${ }^{\circ} \mathrm{C}$.

[^6]: * In all the measurments in the t-metre comparator, the temperature of the invar has heen qiven by thermometer No. 1859, that of the silica bar by No. 18:71, and that of the nickel bar by the mean of 18071 and 18570 during its comparison with the invar and by No. leste while comparing with the silica bar. The thermometer reodings have been corrected acording to N.l.L. cortificates dated 1931

[^7]: *This programme was suggested by the Astronomer Royal. It has considerable advantages over the International chain of 12 groups.

[^8]: " E_{1} is with regard to sign: E_{2} is without regard to sign.

[^9]: * E_{1} is with regard to sign : E_{2} is without regard to sign.

[^10]: position of the latiturle station was her" determined by plane-table fixing on a modern l-inch nitp.

[^11]: ＊Regretion liahle tol $2^{\prime \prime}$ or $3^{\prime \prime}$ error．

 + Resertion＂porrantly good to one second．
 \ddagger From old 1 －incl mat．
 ong．T．Statione there arr wo entries in the two preceding columns，the Latitude station is in the immediate vicinity

[^12]: * With such deffertions at the origin as produce the best fit between it and the Indian Companeatal Ctronirl.

[^13]: * The agrenment is not well maintained botween 31^{\prime} and 32^{\wedge}, where the new section gives a further fall of 15 feet compared with 5 . This is, however, the extreme edge of the old geoidal chart, and it is an area of heavy anomaly, where good results cannot he expected from widely scattered observations.

[^14]: * For the reverse process see Geodetic Report Vol. V, page 74, and Charts XIV and XV.

[^15]: * Approximate.

 Note: Mimus sign denotes N. or E. deflection of the plumb-line.

[^16]: *The diraction of swing has been regulated by the rule-Face right, swing right, and vice versa.

[^17]: * At the early stations at which slip was not occurring, and where small positive triangular errors were obtained, there has been no need to do this, Nor have revised ahotracts been prepared for the last three stations, at which slip wan fully eliminated by very rigorous preliminary rotation of the telescope.

[^18]: * After grinding figure.

[^19]: * There were artually two pegs at evory 24-motres, with a wooden slat mailed across their tops. Any considerable moroment of a peg was betrayed by the dislevelment and splittiner of the slat.
 + That this assumptom is not grosely in error was proved by the fact that wires exposed to the sun folt cool to the cherek when the air trmperature was $92^{2} F$. 'I his pusitively limits the rerrer to $70^{\circ} \mathrm{F}$., for which the mean temperature correction is about $1: 2,010,0 \mathrm{c} 0$.

[^20]: * Reviserl values. The first monsures wero lishe 404 and $1512 \cdot 504$. This was the first day's work, and some blunder evidently oecurred.
 t The mean of $\cdot 349$ and $\cdot 350, \cdot 355$ and $\cdot 353, \cdot 353$ and $\cdot 351, \cdot 355$ and $\cdot 352$ respectively. Tho first mensure appeared discordint and was repeated. The means of both measures have been accepted.

[^21]: *Sortri.S. Vol. T. page 101.
 +Si.. "Supplement" (w Gorlotic Report Vol. VI.

[^22]: " The first of these figures represents the direct distance levelled between terminal bench-marks. The gross total includes additional check-levelling at ends and branch-lines to G.T. Stations ete.
 \dagger i.e., 2×116.
 \ddagger When rolevelments are expressed as a perentage, this percentage refers to the amount of hack or fore (second direction) levelling only, since it is only on such levelling that relevelments occur. In the case of revision levelling relevelments occur in either or both directions.

[^23]: * Disagrees with provjous year's report on account of exclusion of line No. l01d (Sukkur-Hyd ribud) which has since been treated as secondary.

[^24]: - Topo. Nos. of these bench-marks are not available. as portion ViramgamBaroda has not yet been adjusted.
 + Bracketed Topo. Nos. in the check-levelling at Bombay are uanal Topo Nos. and the others refer to Bombay Island levelling.

[^25]: * Bracketed Topo. Nos. in the check-levelling at Bombay are usual Topo. Not, and the others refer to Bombay Island levelling.

[^26]: Nots. - The mean declination for any haur in a month may be obtained by applying the hourly deviation for that hour with the sign given, to the monthly mean.
 Figures in thick type indicate the masimum and minimam values of the hourly deviation.

[^27]: * Obtained from the mean of all hours for the five selected quiet days in each month.

 Note.-The mean dip for any hour in a month may be obtained by applying the hourly deviation for that hour with the sign given, to the monthly mean.

[^28]: * Magnetometer No. 17 was sent to M. I. O. for repairs.

[^29]: * Iaper read before the Comference of Empire Surveyors. London 1931

[^30]: * Now at Dehra Dün.

[^31]: *This is true as regards scale strength; I have not actually considered the case of azimuth strength.

 + The weight of any angle between two directions of weight 2 is unity.

[^32]: * Survey of India, Professional Paper 16, p. 91.

[^33]: * Vide Departmental Paper No. 12, Geodesy, p. 141A, (6).
 \dagger Vide Departmental Paper No. 12, Geodesy, p. 131 D, (12).

[^34]: *Publeatlone dotailed in Parts III, IV and V are alco obtainable from the Officer hacherse Map Record, and Iseue office, 13, Wood Stroot, Galcutta.

[^35]: （7）includes 63 B（Jhñai to Saugor）；（8）includes 14 A（Gooty to Ongole）and 14 B（Nandyal to Atmakur）；（9）includes 40 A（Jhārsugra to Purūlia ）；（10）includes 770 （ Calcutta to Chuadanga）and 77 P（Jessore to Bēräsat）．

[^36]: * For Departmental use only.

[^37]: 8. Survey of India Copy Book of Lettering. Calcutta.

 Price Rs. 3-8.

[^38]: * For Departmental use only.

[^39]: * For Departmental use ouly.

[^40]: - For Oticial use only. \dagger For Departmental use only.

[^41]: * For Departmental use only.
 \dagger Ohtainable from Messrs Dnlan \& Co., 37, Soho Sqqare, London, W., or Messrs. Harrison \& Sons, St. Martin's Lane, London, or the Royal Society at Burlington House, London.
 \ddagger Obtninuble from the Institution of Royal Enginepre, Chatham.
 § Obtainable from Cherles Lobert Johnson at the offices of "Engineering", 35 and 36, Bedford Street Strand, London, W.C.
 || Obtainable Irom the Royal Geograplicai Society, Kensington Gore, London S.W. 7.

[^42]: *Obtainable from Messrs. MacMillan dCo. Limited, st. Mirtin's Street, London, W.C., Bombay, Calcuttia, Madras, Melbourne.
 \dagger Obtainable from the Royal (teorraphical Society, Kensington Gore, London, s.W. 7. \ddagger Obtainable from the Institution of Royal Engineers, Chuthum. § Obtainable from the Institute of l'bysics, 90 Grent Russel street, London W.C. l. || Obtainable from H.M. Stationery ofice, Adastral Honse, Kingsway, Londun, W.C. 2, 28, Abingdon Street, London, S.W.
 ** Obtainable from the oflice of Nature. St. Martiu's streel, London, W.C. e.

[^43]: * Oltamuble from the Royal Geographical Suciety, Kensington Gore, London, S.W. 7.
 \dagger Obtainable from Messrs. Taylor and Francis, Red Lion Court, Flect Street, London, W.C.
 \ddagger Ohtainable from Messers. W. Thacker \& Co.. 2. Creed Lane, Ludgate Fill, London, E. C. f. or Messrs. Thacker. Spink \& Co.. Calcutta.
 § Obtainable from Messrs. Dulau \& Co., 37. Soho Square, London, W., or Mesgrs. Harrison \& Sons., St. Martin's Lane London, or the Royal Society at Burlington House, London.
 If Guvernment of India. Central Publication Branch. Calcutta.

[^44]: * Obtainable from the Crown Agents for the Colonies, 4 Millbank, London, S.W. 1.
 \dagger Obtainable from the Royal Geographical Society, Kensington Gore, London, S.W. 7.
 \ddagger Obtainable from Messrs. Taylor and Francis, Red Lion Court, Fleet Street, London, W.C.
 § Obtainable from the Royal Astronomical Society, Burlington House, London. W. 1.

